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Basics



Graphs

* Definition A graph G is a pair (V, E) Simple graph:
* V. set of vertices
* E:set of edges

We mainly focus on

No loops, no multi-edges

* e € E corresponds to a pair of endpoints x,y € V

edge ends
a X, 2
b Y, W
C X, 2
d 2, W
e Z, W
f T,y
g Z, W

Figure 1.1

(i) graph

|

(ii) graph with loop (iii) digraph (iv) multiple edges

Figure 1.2



Graphs: All about adjacency

 Same graph or not

(a) (b) (c)
* Two graphs G; = (V,E,), G, = (V,, E,) are isomorphic if there is a
bijection f:1; = I, s.t.

e ={a, b} €E; & f(e):=1{f(a),f(b)} € E;



Example: Complete graphs

* There is an edge between every pair of vertices




Example: Regular graphs

* Every vertex has the same degree

/\ 90,0/0,\0,
AA| g wRelloRe
T R4 > @

> QG




Example: Bipartite graphs

* The vertex set can be partitioned into two sets X and Y such that
every edge in G has one end vertex in X and the otherinY

* Complete bipartite graphs




Example (1A, L): Peterson graph

* Show that the following two graphs are same/isomorphic

Figure 1.4



Example: Peterson graph (cont.)

* Show that the following two graphs are same/isomorphic

AN




Subgraphs

* A subgraph of a graph G is a graph H such that
V(H) € V(G),E(H) € E(G)
and the ends of an edge e € E(H) are the same asits ends in G
* His a spanning subgraph when V(H) =V (G)
* The subgraph of G induced by a subset S € V(G) is the subgraph whose
vertex set is S and whose edges are all the edges of G with both ends in §

HEG

Subgraph (in red) Induced Subgraph

10



Paths (B&4%)

* A path is a non-empty alternating sequence vye v €, ... €5 Uy
where vertices are all distinct
* Or it can be written as vyvy ... Vg in simple graphs

e P¥: path of length k (the number of edges)




Walk (Jif )

* A walk is a non-empty alternating sequence vye v €, ... €5 Uy
* The vertices not necessarily distinct
* The length = the number of edges

* Proposition (1.2.5, W) Every u-v walk contains a u-v path



Cycles (3)

* If P =xpX; ... X1 isa path and k = 3, then the graph C := P +
X1 _1Xg is called a cycle

* C¥: cycle of length k (the number of edges/vertices)

[ ]

n=4 n=5 n=6

* Proposition (1.2.15, W) Every closed odd walk contains an odd cycle



Neighbors and degree

* Two vertices a # b are called adjacent if they are joined by an edge

* N(x): set of all vertices adjacent to x
* neighbors of x
* Avertex is isolated vertex if it has no neighbors

* The number of edges incident with a vertex x is called the degree of x
* Aloop contributes 2 to the degree

* A graph is finite when both E(G) and V(G) are finite sets

graph with loop



Handshaking Theorem (Euler 1736)

* Theorem A finite graph G has an even number of vertices with odd

degree
C/ -

(i) graph (ii) graph with loop (iii) digraph (iv) multiple edges

yA W

Figure 1.2
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Proof

* Theorem A finite graph G has an even number of vertices with

odd degree.

* Proof The degree of x is the number of times it appears
in the right column. Thus

D deg() = 2IE(G)

xeV(G)

edge

ends

a

Q 40 &0 o

T,z
Y, w
X,z
2, W
2, W
Zz,Y
2, W

Figure 1.1




Degree

* Minimal degree of G: 6(G) = min{d(v):v € V}
* Maximal degree of G: A(G) = max{d(v)' v EV}

* Average degree of G: d(G) = Zvev d(v) = ZlEl

* All measure the density’ of a graph

- d(G) = 6(G)



Minimal degree guarantees long paths and
cycles

* Proposition (1.3.1, D) Every graph G contains a path of length 6 (G)
and a cycle of length at least 6 (G) + 1, provided 6 (G) = 2.




Distance and diameter

* The distance d;(x,y) in G of two vertices x, y is the length of a
shortest x~7y path

* if no such path exists, we set d(x,y) = oo

* The greatest distance between any two vertices in G is the diameter
of G
diam(G) = max d(x,y)
X, YyEV



Radius and diameter

* A vertex is central in G if its greatest distance from other vertex is
smallest, such greatest distance is the radius of G
rad(G) = min maxd(x, y)

xXeV yev

* Proposition (1.4, H; Ex1.6, D) rad(G) < diam(G) < 2 rad(G)

?

® Central Point

3

=

|

|

| b

|
® @®
4 4

Radmus =2
Diameter = 4



Radius and maximum degree control graph
Size

* Proposition (1.3.3, D) A graph G with radius at most r and maximum
degree at most A> 3 has fewer than ﬁ (A—1)".

Figure 1: Star Graph
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Girth

* The minimum length of a cycle in a graph G is the girth g(G) of G

* Example: The Peterson graph is the unique 5-cage
e cubic graph (every vertex has degree 3)
e girth=5

* smallest graph satisfies the above properties




Girth (cont.)

* A tree has girth oo

* Note that a tree can be colored with two different
colors

* = A graph with large girth has small chromatic
number?

e Unfortunately NO!

* Theorem (Erdd@s, 1959) For all k, [, there exists a
graph G with g(G) > land y(G) > k

24



Girth and diameter

* Proposition (1.3.2, D) Every graph G containing a cycle satisfies
g(G) < 2diam(G) + 1

* When the equality holds?



Girth and minimal degree lower bounds
graph size

1+6YI-5(6—1), ifg=2r+1isodd
230248 — 1), if g = 2r is even
* Exercise (Ex7, chl, D) Let G be agraph. If §(G) = 6 = 2and g(G) =
g, then |G| = ny(5, g9)
e Corollary (1.3.5, D) If §(G) = 3, then g(G) < 2 log, |G|

° n0(6' g) =



Triangle-free upper bounds # of edges

* Theorem (1.3.23, W, Mantel 1907) The maximum number of edges in
an n-vertex triangle-free simple graph is |n? /4|

* The bound is best possible
* There is a triangle-free graph with |[n? /4| edges: Kin/21m/21

* Extremal problems



Connected, connected component

e A graph G is connected if G # @ and any two of its vertices are linked
by a path

* A maximal connected subgraph of G is a (connected) component

1]

28



Quiz

* Problem (1B, L) Suppose G is a graph on 10 vertices that is not
connected. Prove that G has at most 36 edges. Can equality occur?

* More general (Ex9, S1.1.2, H) Let G be a graph of order n that is not
connected. What is the maximum size of G?



Connected vs. minimal degree

* Proposition (1.3.15, W) If §(G) = nT_l, then G is connected

e (Ex16,51.1.2, H; 1.3.16, W)

If 6(G) > n—z’ then G need not be connected
2

* Extremal problems

”n

e “best possible” “sharp”



-0
Add/delete an edge @ I:

* Components are pairwise disjoint; no two share a vertex

* Adding an edge decreases the number of components by O or 1
* = deleting an edge increases the number of components by O or 1
* Proposition (1.2.11, W)
Every graph with n vertices and k edges has at leastn — k
components

* An edge e is called a bridge if the graph ¢ — e has more components

* Proposition (1.2.14, W)
An edge e is a bridge < e lies on no cycle of G
* Or equivalently, an edge e is not a bridge < e lies on a cycle of G

31



Cut vertex and connectivity I—i>

* Anode v is a cut vertex if the graph G — v has more O\
components

* A proper subset S of vertices is a vertex cut set if the
graph G — S is disconnected, or trivial (a graph of
order 0 or 1)

* The connectivity, k(G), is the minimum size of a cut
set of G

* The graph is k-connected for any k < k(G)

32



Connectivity properties

‘k(K")=n-1
* If G is disconnected, k(G) = 0

* = A graphis connected © k(G) > 1

* If G is connected, non-complete graph of order n, then
1<k(G)<n-2



Connectivity properties (cont.)

(1.2.14, W)
An edge e is a bridge < e lies on no cycle of G

* Or equivalently, an edge e is not a bridge <& e lies on a cycle of G

* kK(G) = 2 < (G is connected and has no cut vertices

* A vertex lies on a cycle # it is not a cut vertex

« = (Ex13, S1.1.2, H) Every vertex of a connected graph G lies on at least one
cycle # k(G) = 2

* (Ex14, S1.1.2, H) k(G) = 2 implies G has at least one cycle

e (Ex12, S1.1.2, H) G has a cut vertex vs. G has a bridge



Connectivity and minimal degree

e (Ex15, S1.1.2, H)

* k(G) <6(G) <
* If §5(G) = n—2,thenk(G) = 6(G)




Edge-connectivity

* A proper subset FF C E is edge cut set if the graph G — F is
disconnected

* The edge-connectivity A(G) is the minimal size of edge cut set
* A(G) = 0if G is disconnected
* Proposition (1.4.2, D) If G is non-trivial, then k(G) < A(G) < 6(G)




Jeff 1 Britta

Bipartite graphs

* Theorem (1.2.18, W, Kénig 1936)
A graph is bipartite < it contains no odd cycle

ition (1.2.15, W) Every closed odd walk contains an odd cycle



Complete graph is a union of bipartite graphs

* The union of graphs G4, ..., G, written G; U --- U Gy, is the graph with
vertex set U¥_, V(G;) and edge set U, E(G;)

* Consider an air traffic system with k airlines
* Each pair of cities has direct service from at least one airline

* No airline can schedule a cycle through an odd number of cities \>4/ |
VA

* Then, what is the maximum number of cities in the system?

* Theorem (1.2.23, W) The complete graph K,, can be expressed as the
union of k bipartite graphs & n < 2%



Bipartite subgraph is large

 Theorem (1.3.19, W) Every loopless graph G has a bipartite subgraph
with at least |E|/2 edges
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Trees

* A treeis a connected graph T with no cycles

Root Node
Savings = Low, Med, High?

Savings = High

Yes No Yes No

Savings = Low

Savings = Medl

Good Credit Risk

Bad Risk Good Risk Bad Risk Good Risk




Properties

* =>(Ex 3, S1.3.1, H) Atree of order n = 2 is a bipartite graph

on (1.2.14, W)
An edge e is a bridge < e lies on no cycle of G
° Reca ” that * Or equivalently, an edge e is not a bridge < e lies on a cycle of G

* = Every edge in a tree is a bridge

* Tisatree & T is minimally connected, i.e. T is connected butT — e
is disconnected for everyedgee € T



Equivalent definitions (Theorem 1.5.1, D)

 Tisatree of ordern
& Any two vertices of T are linked by a unique pathin T
< T is minimally connected

* i.e. T is connected but T — e is disconnected for everyedgee € T

< T is maximally acyclic

* i.e. T contains no cycle but T + xy does for any non-adjacent vertices x,y €
T

< (Theorem 1.10, 1.12, H) T is connected with n — 1 edges
< (Theorem 1.13, H) T is acyclic with n — 1 edges



Leaves of tree

* A vertex of degree 1 in a tree is called a leaf

* Theorem (1.14, H; Ex9, S1.3.2, H) Let T be a tree of order n = 2. Then
T has at least two leaves

* (Ex3,S1.3.2, H) Let T be a tree with max degree A. Then T has at least
A leaves

* (Ex10, S1.3.2, H) Let T be a tree of order n = 2. Then the number of
leaves is
2+ ) (@d®) -2)

v:d(v)=3
* (Ex8, S1.3.2, H) Every nonleaf in a tree is a cut vertex

* Every leaf node is not a cut vertex



The center of a tree is a vertex or ‘an edge’

* Theorem (1.15, H) In any tree, the center is either a single vertex or a
pair of adjacent vertices



Any tree can be embedded in a ‘dense’ graph

* Theorem (1.16, H) Let T be a tree of order k + 1 with k edges. Let G
be a graph with 6(G) = k. Then G contains T as a subgraph



Spanning tree

e Given a graph G and a subgraph T, T is a spanning tree of G if T is a
tree that contains every vertex of ¢

* Example: A telecommunications company tries to lay cable in a new
neighbourhood

* Proposition (2.1.5¢, W) Every connected graph contains a spanning
tree



Cayley’s tree formula

* Theorem (1.18, H; 2.2.3, W). There
are n™2 distinct labeled trees of

ordern H|/\3AA
£d €3 €3

&

63 €3 €3 €3
£d €3 €3 3
Ao A Ao oA

LI
2 NN
XXX
NZAN

FIGURE 1.46. Labeled trees on four vertices



Wiener index

* In a communication network, large diameter may be acceptable if
most pairs can communicate via short paths. This leads us to study
the average distance instead of the maximum

* Wiener index D(G) = Xy, yey () 6 (W, V)

 Theorem (2.1.14, W) Among trees with n vertices, the Wiener index
D (T) is minimized by stars and maximized by paths, both uniquely

* Over all connected n-vertex graphs, D(G) is minimized by K,, and
maximized (2.1.16, W) by paths
* (Lemma 2.1.15, W) If H is a subgraph of G, then d;(u,v) < dy(u, v)



Prefix coding

* A binary tree is a rooted plane tree where each vertex has at most
two children

* Given large computer files and limited storage, we want to encode
characters as binary lists to minimize (expected) total length

* Prefix-free coding: no code word is an initial portion of another

* Example: 11001111011




Huffman’s Algorithm (2.3.13, W)

* Input: Weights (frequencies or probabilities) p4, ...,
e Output: Prefix-free code (equivalently, a binary tree)

* |dea: Infrequent items should have longer codes; put infrequent items
deeper by combining them into parent nodes.

* Recursion: replace the two least likely items with probabilities p, p’
with a single item of weight p + p’



Example (2.3.14, W)

100

O | L

00000

00001

01

11

0001

001

S| || |Q|O

D W IN[OIN]|FR | ]U

101

The average length is

5X3+5+5+7X24-

33



Huffman coding is optimal

* Theorem (2.3.15, W) Given a probability distribution {p;} on n items,
Huffman’s Algorithm produces the prefix-free code with minimum
expected length



Huffman coding and entropy

* The entropy of a discrete probability distribution {p;} is that

H(p) = — z p; log, p;

l
* Exercise (Ex2.3.31, W) H(p) < average length of Huffman coding <
H(p) +1
* Exercise (Ex2.3.30, W) When each p; is a power of 12, average length
f Huff ding is H
(@) utrtfman Cco |ng IS (p) Codewords average length (1) <é> @) (i> L @3) <§> +3) (£>

31 5 0
1.0 1.75 bits/symbol
32 25 0 10
5 1 H
1

o
I I

l()h .2+ l()g_, 4+ l() ‘%+ l()g_, 8
1 3
2

|
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Eulerian circuit

* A closed walk through a graph using every edge once is called an
Eulerian circuit

* A graph that has such a walk is called an Eulerian graph

* Theorem (1.2.26, W) A graph G is Eulerian < it has at most one
nontrivial component and its vertices all have even degree

* (possibly with multiple edges)

* Proof “=" That G must be connected is obvious.
Since the path enters a vertex through some edge and
leaves by another edge, it is clear that all degrees must be even



Key lemma

e Lemma (1.2.25, W) If every vertex of a graph G has degree at least 2,

then G contains a cycle.

(1.3.1, D) Every graph G contains a path of length 6 (G)
and a cycle of length at least 6 (G) + 1, provided §(G) = 2.

57



Eulerian circuit

'Theorem (1.2.26, W) A graph G is Eulerian & it has at most one
nontrivial component and its vertices all have even degree

Konigsberg

58



Other properties

* Proposition (1.2.27, W) Every even graph decomposes into cycles

* The necessary and sufficient condition for a directed Eulerian circuit is
that the graph is connected and that each vertex has the same ‘in-
degree’ as ‘out-degree’



TONCAS

* TONCAS: The obvious necessary condition is also sufficient

'Theorem (1.2.26, W) A graph G is Eulerian & it has at most one
nontrivial component and its vertices all have even degree

* Proposition (1.3.28, W) The nonnegative integers d;, ..., d,, are the
vertex degrees of some graph & )i, d; is even

* (Possibly with loops)

* Otherwise (2,0,0) is not realizable

1.3.63. (!) Let d,..., d, be integers such thatd; > .-+ > d, > 0. Prove that there is
a loopless graph (multiple edges allowed) with degree sequence d,, ..., d, if and only if
Y diiseven and dy < d; + - - +d,. (Hakimi [1962])

60



Hamiltonian path/circuits

* A path P is Hamiltonian if V(P) = V(G)

* Any graph contains a Hamiltonian path is called traceable

* A cycle C is called Hamiltonian if it spans all vertices of G
* A graph is called Hamiltonian if it contains a Hamiltonian circuit

* In the mid-19th century, Sir William Rowan Hamilton tried to
popularize the exercise of finding such a closed path in the graph of

—a

—_—-
N

—_— a
L_a

the dodecahedron (1

&

Figure 1.9

——

H

1)
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Degree parity Is not a criterion

(1.2.26, W) A graph G is Eulerian < it has at most one
nontrivial component and its vertices all have even degree

* Hamiltonian graphs
* all even degrees (4
* all odd degrees K
* a mixture G4

* non-Hamiltonian graphs G,
* all even G,
* all odd K5
* mixed Pq
G,

62



Example

* The Petersen graph has a Hamiltonian path but no Hamiltonian cycle

* Determining whether such paths and cycles exist in graphs is
the Hamiltonian path problem, which is NP-complete



P, NP, NPC, NP-hard

P The general class of questions for which some
algorithm can provide an answer in polynomial
time

* NP (nondeterministic polynomial time) The class
of questions for which an answer can be verified in
polynomial time

* NP-Complete

1. cisin NP
2. Every problem in NP is reducible to c in polynomial

time
* NP-hard
(o D
* Every problem in NP is reducible to c in polynomial time

NP-Hard

NP-Complete

P # NP

NP-Hard

P=NP

\ = NP-Complete




Large minimal degree implies Hamiltonian

* Theorem (1.22, H, Dirac) Let G be a graph of ordern = 3. If 6 (G) = n/2,
then G is Hamiltonian
(1.3.15, W) If 6 (G) = nT_l, then G is connected

(Ex16, S1.1.2, H) (1.3.16, W)
If6(G) = nz;z’ then G need not be connected

 The bound is tight
(Ex12b, S1.4.3, H) G = K, ;41 is not Hamiltonian
Exercise The condition when K. ¢ is Hamiltonian

* The condition is not necessary
* (, is Hamiltonian but with small minimum (and even maximum) degree



Generalized version

* Exercise (Theorem 1.23, H, Ore; Ex3, S1.4.3, H) Let G be a graph of
order n = 3. If deg(x) + deg(y) = n for all pairs of nonadjacent
vertices x,y, then G is Hamiltonian

(1.22, H, Dirac) Let G be a graph of ordern > 3. 1f 6(G) = n/2,
then G is Hamiltonian




Independence number & Hamiltonian

* A set of vertices in a graph is called independent if “ o /

they are pairwise nonadjacent f :

* The independence number of a graph G, denoted as “ : :
a(G), is the largest size of an independent set

e Example: a(G,) = 2,a(G,) = 3

* Theorem (1.24, H) Let G be a connected graph of
ordern = 3. If k(G) = a(G), then G is Hamiltonian

(Ex14, S1.1.2, H) k(G) = 2 implies G has at least one cycle




Independence number & Hamiltonian 2

Theorem (1.24, H) Let G be a connected graph of
ordern = 3. If k(G) = a(G), then G is Hamiltonian

* The result is tight: k(G) = a(G)—1 is not enough
*Kipyirk=r,a=r+1
* Exercise (Ex4, S1.4.3, H) Peterson graph: k = 3,a = 4

FIGURE 1.63. The Petersen Graph.
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Pattern-free & Hamiltonian .4\ ﬂ

* G is H-free if G doesn’t contain a copy of H as induced subgraph

* Theorem (1.25, H) If G is 2-connected and {K1,3,Z1}-free, then G is
Hamiltonian

(Ex14, 51.1.2, H) k(G) = 2 implies G has at least one cycle

* The condition 2-connectivity is necessary
* (Ex2, S1.4.3, H) If G is Hamiltonian, then G is 2-connected
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Motivating example

Candidates

Jobs Q

Candidates

Jobs
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Definitions

A matching is a set of independent edges, in which no pair of edges
shares a vertex

* The vertices incident to the edges of a matching M are M-saturated
(T AT H]); the others are M-unsaturated

* A perfect matching in a graph is a matching that saturates every
vertex

* Example (3.1.2, W) The number of perfect matchings in K,, , is n!

* Example (3.1.3, W) The number of perfect matchings in K, is



Maximal/maximum matchings # K/ 8¢ K

* A maximal matching in a graph is a matching that cannot be enlarged
by adding an edge

* A maximum matching is a matching of maximum size among all
matchings in the graph

* Example: P3, P . P e
G 37

* Every maximum matching is maximal, but not every maximal
matching is a maximum matching



Symmetric difference of matchings

@

* The symmetric difference of M,M"is MAM' = (M — M") U (M’ — M)
* Lemma (3.1.9, W) Every component of the symmetric difference of

two matchings is a path or an even cycle

(‘h—-\ Oe—()
>} i ‘f, /J i
()—',/ ‘54) O

o~
—r

0O

18]
0
@)

O




Maximum matching and augmenting path

A2 A3 A4 A5
* Given a matching M, an M-alternating path is a path N
that alternates between edges in M and edges not in
M A | \
* An M-alternating path whose endpoints are M- - S Me Ay

unsaturated is an M-augmenting path
* Theorem (3.1.10, W, 1.50, H; Berge 1957) A matching

M in a graph G is a maximum matching in G © G has ™ | N
no M-augmenting path ;T
Lemma (3.1.9, W) Every component of the symmetric difference of \ P % \

two matchings is a path or an even cycle A
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Hall’'s theorem (TONCAS)

* Theorem (3.1.11, W; 1.51, H; 2.1.2, D; Hall 1935) Let G be a bipartite
graph with partition X, Y.
G contains a matching of X © |[N(S)| = [S| forall S € X

(3.1.10, W; 1.50, H; Berge 1957) A matching
M in a graph G is a maximum matching in G © G has
no M-augmenting path

* Exercise. Read the other two proofs in Diestel.

e Corollary (3.1.13, W; 2.1.3, D) Every k-regular (k > 0) bipartite graph
has a perfect matching




General regular graph

e Corollary (2.1.5, D) Every regular graph of positive even degree has a
2-factor
* A k-regular spanning subgraph is called a k-factor
* A perfect matching is a 1-factor

Theorem (1.2.26, W) A graph G is Eulerian < it has at most one
nontrivial component and its vertices all have even degree

Corollary (3.1.13, W; 2.1.3, D) Every k-regular (k > 0) bipartite graph
has a perfect matching
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Application to SDR

S, = {2.8)
* Given some family of sets X, a system of S, = {81,
distinct representatives for the sets in X S3 = {5,7},
is a ‘representative’ collection of distinct S1=1{2,4,8
Sy = {2,4).

elements from the sets of X

The family X; = {57, 52, 53,54} does have an SDR. namely {2,8,7,4}. The
family Xo = {57.55,.54. S5} does not have an SDR.
) 1 j

* Theorem(1.52, H) Let 54, S,, ..., S;, be a collection of finite, nonempty
sets. This collection has SDR < for every t € |k], the union of any t of
these sets contains at least t elements

(3.1.11, W; 1.51, H; 2.1.2, D; Hall 1935) Let G be a bipartite
graph with partition X, Y.
G contains a matching of X © [N(S)| = |S| forallS € X




KOnig Theorem
Augmenting Path Algorithm



Vertex cover

* Aset U € V is a (vertex) cover of E if every edge in G is incident with
a vertexin U

* Example:
* Art museum is a graph with hallways are edges and corners are nodes
e A security camera at the corner will guard the paintings on the hallways
* The minimum set to place the cameras?



Konig-Egevary Theorem (Min-max theorem)

* Theorem (3.1.16, W; 1.53, H; 2.1.1, D; K6nig 1931; Egevary 1931)
Let G be a bipartite graph. The maximum size of a matching in G is
equal to the minimum size of a vertex cover of its edges

(3.1.10, W; 1.50, H; Berge 1957) A matching
M in a graph G is a maximum matching in G © G has
no M-augmenting path

81



Weighted Bipartite Matching
Hungarian Algorithm



Weighted bipartite matching

* The maximum weighted matching problem is to seek a perfect matching M
to maximize the total weight w(M)

 Bipartite graph
* W.l.o.g. Assume the graph is K, ,, withw; ; = 0 forall i,j € [n]
* Optimization:

score(H) = 1.6

01(1)

max W(Ma)= z ai’le"j

Lj :
s.t.aj; +--+a;, <1lforanyi
a;; +-++a,; <1foranyj

a; j € {0,1}

* Integer programming
* General IP problems are NP-Complete
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(Weighted) cover

* A (weighted) cover is a choice of labels u4, ..., u,, and vy, ..., v,, such
thatu; + v; = w; ; forall i,
* The cost c¢(u, v) of a cover (u, v) is X;u; + 2 v;

* The minimum weighted cover problem is that of finding a cover of minimum
cost

* Optimization problem

min c(u,v) = Zul z

S. tul+v >Wl]foranyl]
u;, v; = 0foranyi,j



Duality

(IP)

max Z ai,jWi,j
Lj
s.t.aj; +--+a;, <1lforanyi
a;; + -+ ay; <1foranyj

ai,j € {0,1}

>

(Linear programming)

maxz ai,jWi,j
Lj
s.t.aj; +-+a;, <1lforanyi
a;; + -+ ay; <1foranyj

ai,]- >0

e 4

(Dual)

i
s.t.u; +v; 2w, jforany i, j
U, vj 2 0

minZui +2vj
J

* Weak duality theorem
* For each feasible solution a and (u, v)

IRTTED)

l,J

ui+zvj
J

i

thus max }}; ;a; jw; j < min ), u; + ;v
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Duality (cont.)

e Strong duality theorem

* If one of the two problems has an optimal solution, so does the other one and
that the bounds given by the weak duality theorem are tight

max ) a; iw;j =min ) u; + V;
g =min Y Y
* Lemma (3.2.7, W) For a perfect matching M and cover (u,v) in a
weighted bipartite graph G, c(u,v) = w(M).
c(u,v) =w(M) & M consists of edges x;y; such thatu; + v; = w; ;
In this case, M and (u, v) are optimal.



Equality subgraph

* The equality subgraph G, ,, for a cover (u, v) is the spanning subgraph
of K, , having the edges x;y; such thatu; + v; = w; ;
* Soif c(u,v) = w(M) for some perfect matching M, then M is composed of
edges in Gy, ,,

* And if Gy, ;, contains a perfect matching M, then (u, v) and M (whose weights
are u; + vj) are both optimal



Back to (unweighted) bipartite graph

* The weights are binary 0,1

* Hungarian algorithm always maintain integer labels in the weighted
cover, thus the solution will always be 0,1

* The vertices receiving label 1 must cover the weight on the edges,
thus cover all edges

* So the solution is a minimum vertex cover



Matchings in General Graphs



Perfect matchings

* Ky, Con, Pyy, have perfect matchings

° (3.1.13, W; 2.1.3, D) Every k-regular (k > 0) bipartite graph
has a perfect matching

* Theorem(1.58, H) If G is a graph of order 2n such that 6 (G) = n, then
(G has a perfect matching

m (1.22, H, Dirac) Let G be a graph of ordern > 3. 1f §(G) = n/2,
then G is Hamiltonian
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Tutte’s Theorem (TONCAS)

* Let q(G) be the number of connected components with odd order

* Theorem (1.59, H; 2.2.1, D; 3.3.3, W)
Let G be a graph of order n = 2. G has a perfect matching & q(G —
S)<|S|forallS SV

»
o /

N /"_"7{\
X A
e N

» / A
(./ 4 ® q‘\ ]
g o o B
// : é oL \\—_r/ \\‘\\‘\
( .y ¢ S »
( AL
g \_\‘f:/ Gs

Fig. 2.2.1. Tutte’s condition ¢(G — S) < |S| for ¢ = 3, and the
contracted graph G5 from Theorem 2.2.3.
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Petersen’s Theorem

* Theorem (1.60, H; 2.2.2, D;3.3.8, W)
Every bridgeless, 3-regular graph contains a perfect matching

(1.59, H; 2.2.1,D; 3.3.3, W)
Let G be a graph of order n = 2. G has a perfect matching © q(G —
S)<|S|forallSESV
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Find augmenting paths in general graphs

* Different from bipartite graphs, a vertex can belong to both Sand T
y x
* Example: How to explore from M-unsaturated point u .

o

'heorem (3.1.10, W; 1.50, H; Berge 1957) A matching u v o
M in a graph G is a maximum matching in G © G has
no M-augmenting path

* Flower/stem/blossom
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Lifting

augmenting path
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ontractedv
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blossom 8
?
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blossom
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T Case 1.
blossom

> —-oeo--- o Case 2.

augmenting path

contracted G——) — .
blossom e
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E
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Q
blossom
augmenting path
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Case 1.
v
blossom
ro

augmenting path
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Edmonds’ blossom algorithm (3.3.17, W)

Input: A graph G, a matching M in (G, an M-unsaturated vertex u

Idea: Explore M-alternating paths from u, recording for each vertex the vertex from
which it was reached, and contracting blossoms when found

* Maintain sets S and T analogous to those in Augmenting Path Algorithm, with S consisting of u
and the vertices reached along saturated edges

* Reaching an unsaturated vertex yields an augmentation.
Initialization: S = {u}and T = @

Iteration: If S has no unmarked vertex, stop; there is no M-augmenting path from u

. Otge;wise, select an unmarked v € S. To explore from v, successively consider each y € N(v) s.t.
y

e Ifyis unhsaturated by M, then trace back from y (expanding blossoms as needed) to report an M-augmenting
u, )"pat

 Ify €85, then a blossom has been found. Suspend the exploration of v and contract the blossom, replacing its
vertices in S and T by a single new vertex in S. Continue the search from this vertex in the smaller graph.

e Otherwise, y is matched to some w by M. Include y in T (reached from v), and include w in S (reached from y)
» After exploring all such neighbors of v, mark v and iterate



Illustration

exposed exposed exposed
] L e
Forest expansion
Vo e={vw) w X
sesssssssshuninesssl
P
el
el

out-of-forest vertices
out-of-forest edges inM

forest F and out-of-forest edges notin M

exposed exposed exposed

Blossom contraction

1l

forest F and out-of-forest edges notin M

>

L EEEE )
L SRR
E EEEE

out-of-forest vertices
out-of-forest edges inM

exposed exposed exposed

o) e .10

forest F* in G" and out-of-forest edges not in M’

Path detectionin G’

*—P

L TR RE
L LEEE
L EERE

out-of-forest vertices
out-of-forest edges in M’

exposed exposed exposed

Q L O 9

forest F and out-of-forest edges notin M

Path lifting

o—o

L SEEEE )
L R
Bernnelp

out-of-forest vertices
out-of-forest edges inM
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Example 2

.

O In forest, unmarked
O In forest, marked

O Not in forest

In forest
Not in forest
Part of matching

O In forest, unmarked
O In forest, marked

O Not in forest

In forest
Not in forest
Part of matching
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Example 2 (cont.)

®

O In forest, unmarked
Q In forest, marked

O Not in forest

In forest
Not in forest
Part of matching
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Lecture 6: More on
Connectivity

Shuai Li
John Hopcroft Center, Shanghai Jiao Tong University
https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS445/index.htm|
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Vertex cut set and connectivity

* A proper subset S of vertices is a vertex cut set if the graph G — S is
disconnected

* The connectivity, k(G), is the minimum size of a vertex set S of G such that
G — S is disconnected or has only one vertex

* The graph is k-connected if k < k(G)
ck(K,):=n—1
* If G is disconnected, k(G) =0

= Agraphis connected = k(G) > 1

* |If G is connected, non-complete graph of order n, then 0,

000 100

* For convention, k(K;) = 0
* Example (4.1.3, W) For k-dimensional cube Q;, = {0,1}*, k(Qx) = k



Edge-connectivity

disconnecting set edge cut
* A disconnecting set of edgesisaset F € E(G) such that G — F has
more than one component

* A graph is k-edge-connected if every disconnecting set has at least k edges

* The edge-connectivity of G, written A(G), is the minimum size of a
disconnecting set

* Given S, T € V(G), we write [S, T] for the set of edges having one
endpoint in S and the otherin T

* An edge cut is an edge set of the form [S, S¢] where S is a nonempty proper
subset of V' (G)

* Every edge cut is a disconnecting set, but not vice versa

* Remark (4.1.8, W) Every minimal disconnecting set of edges is an
edge cut



Connectivity and edge-connectivity

° (1.4.2, D) If G is non-trivial, then k(G) < A(G) < 6(0)‘
* If6(G) =n—2,then k(G) = 6(G)

thatis k(G) = A(G) = §(G)

* Theorem (4.1.11, W) If G is a 3-regular graph, then k(G) = A(G)



Properties of edge cut

* When A(G) < §(G), a minimum edge cut cannot isolate a vertex
 Similarly for (any) edge cut
* Proposition (4.1.12, W) If S is a set of vertices in a graph G, then

5,501 = ), dw) — 2e(GIS)

* Corollary (4.1.13, W) If G is a simple graph and |[S, S¢]| < §(G), then
S| > §(G)

* |S| must be much larger than a single vertex




Blocks

* A block of a graph G is a maximal connected subgraph of G that has
no cut-vertex. If G itself is connected and has no cut-vertex, then G is

a block (1.2.14, W) Co—o

° Exa m ple An edge e is a bridge < e lies on no cycle of G

* Or equivalently, an edge e is not a bridge <& e lies on a cycle of G

* An edge of a cycle cannot itself be a block

* An edge is block & it is a bridge @
* The blocks of a tree are its edges

* |If a block has more than two vertices, then it is 2-connected

* The blocks of a loopless graph are its isolated vertices, bridges, and its
maximal 2-connected subgraphs



Intersection of two blocks

* Proposition (4.1.19, W) Two blocks in a graph share at most one
vertex

* When two blocks share a vertex, it must be a cut-vertex

* Every edge is a subgraph with no cut-vertex and hence is in a block.
Thus blocks in a graph decompose the edge set



Block-cutpoint graph

* The block-cutpoint graph of a graph G is a bipartite graph H in which
one partite set consists of the cut-vertices of G, and the other has a
vertex b; for each block B; of G. We include vb; as an edge of H &

UEBi

* (Ex34, S4.1, W) When G is connected, its block-cutpoint graph is a
tree



Depth-first search (DFS)

* Depth-first search | I M

u a b c

* Lemma (4.1.22, W) If T is a spanning tree of a connected graph grown
by DFS from u, then every edge of G not in T consists of two vertices
v, w such that v lies on the u, w-path in T



Finding blocks by DFS

* Input: A connected graph G

* ldea: Build a DFS tree T of G, discarding portions of T as blocks are
identified. Maintain one vertex called ACTIVE

* Initialization: Pick a root x € VV(H); make x ACTIVE; set T = {x}

 lteration: Let v denote the current active vertex

* If v has an unexplored incident edge vw, then
e Ifw & V(T), then add vw to T, mark vw explored, make w ACTIVE
 Ifw € V(T), then wis an ancestor of v; mark vw explored

* |If v has no more unexplored incident edges, then

* If v # x and w is a parent of v, make w ACTIVE. If no vertex in the current subtree T’
rooted at v has an explored edge to an ancestor above w, then V(T") U {w} is the vertex
set of a block; record this information and delete V(T")

* if v = x, terminate
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Strong orientation

 Theorem (2.5, L; 4.2.14, W, Robbins 1939) A graph has a strong

orientation, i.e. an orientation that is a strongly connected digraph
& it is 2-edge-connected

* A directed graph is strongly connected if for every pair of vertices (v, w),
there is a directed path fromvtow

* Proposition (2.4, L) Let xy € T which is not a bridge in G and x is a parent of
y. Then there exists an edge in ¢ but not in T joining some descendant a of y
and some ancestor b of x

* The blocks of a loopless graph are its isolated vertices, bridges, and its
maximal 2-connected subgraphs

2 (4.1.22, W) If T is a spanning tree of a connected graph grown
by DFS from u, then every edge of G not in T consists of two vertices

v, w such that v lies on the u, w-path in T 111




2-Connected Graphs



2-connected graphs

* Two paths from u to v are internally disjoint if they have no common
internal vertex

(4.2.2, W; Whitney 1932)
A graph G having at least three vertices is 2-connected < for each
pair u, v € V(&) there exist internally disjoint u, v-paths in G




Equivalent definitions for 2-connected graphs

 Lemma (4.2.3, W, Expansion Lemma) If GG is a k-connected graph, and
G’ is obtained from G by adding a new vertex y with at least k

neighbors in G, then G’ is k-connected @
G
e

* Theorem (4.2.4, W) For a graph G with at least three vertices, TFAE

* (7 is connected and has no cut-vertex
* Forall x,y € V(G), there are internally disjoint x, y-paths
* Forallx,y € V(G), there is a cycle through x and y

* 6(G) = 1 and every pair of edges in G lies on a common cycle ¥ X
w@z
v

Yy



Ear decomposition

* An ear of a graph G is a maximal path whose internal q v
vertices have degree 2 in G

* An ear decomposition of G is a decomposition Py, ...
such that P, is a cycle and P; fori = 1 is an ear of PO P;

* Theorem (4.2.8, W)
A graph is 2-connected < it has an ear decomposition.
Furthermore, every cycle in a 2-connected graph is the initial cycle in
some ear decomposition

 Corollary (4.2.6, W) If G is 2-connected, then the graph G’ obtained by
subdividing an edge of G is 2-connected @ R @
* (Ex14,51.1.2, H) k(G) = 2 implies G has at least one cycle




Closed-ear

* A closed ear of a graph G is a cycle C such that all I><I
vertices of C except one have degree 2 in G
* A closed-ear decomposition of G is a decomposition

Py, ..., P, such that Py isacycleand P; fori = 1is an
(open) ear oraclosed earin Py U ---U P;

P; (open)

P, (closed)

P, 116



Closed-ear decomposition

* Theorem (4.2.10, W)
A graph is 2-edge-connected < it has a closed-ear decomposition.
Every cycle in a 2-edge-connected graph is the initial cycle in some

such decomposition

(1.2.14, W)
An edge e is a bridge < e lies on no cycle of G
* Or equivalently, an edge e is not a bridge < e lies on a cycle of G



Strong orientation (Revisited)

Theorem (2.5, L; 4.2.14, W; Robbins 1939) A graph has a strong
orientation, i.e. an orientation that is a strongly connected digraph
& it is 2-edge-connected

P, (closed)

118



k-Connected and k-Edge-
Connected graphs




X, y-cut

* Givenx,y €V(G),asetS € V(G) —{x,y}is an x, y-separator or
x,y-cutif G — S has no x, y-path
* Let k(x,y) be the minimum size of an x, y-cut

* Let A(x, y) be the maximum size of a set of pairwise internally disjoint x, y-
paths

* k(x,y) = A(x,y)

*ForX,Y € VV(G), an X, Y-path is a path having first vertex in X, last
vertex in Y, and no other vertex in X UY



Example (4.2.16, W)

«S=1{b,c,zd}

*k(x,y) = Alx,y) =4
cx(w,z) =A(w,z) =3




Menger’s Theorem

(4.2.17, W, 3.3.1, D; Menger, 1927) If x,y are vertices of a
graph G and xy € E(G), then k(x,y) = A(x,y)

Vi Lot a Vo ﬁ

A
N
Lprom g@% : >'

Hy

Case 1

(3.1.16, W; 1.53, H; 2.1.1, D; Kénig 1931; Egevary 1931)
Let G be a bipartite graph. The size of a matching in G is
equal to the size of a vertex cover of its edges
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Edge version

* Theorem (4.2.19, W) If x and y are distinct vertices of a graph G, then
the minimum size k'(x, y) of an x, y-disconnecting set of edges
equals the maximum number A'(x, y) of pairwise edge-disjoint x, y-
paths

* The line graph L(G) of a graph G is the graph whose vertices are the edges of
G withef € E(L(G)) whene =uvand f =vwinG
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Back to connectivity

* Theorem (4.2.21, W)

K(G) = BLL Alx,y),  AG) = mn A'(x,y)

e Lemma (4.2.20, W) Deletion of an edge reduces connectivity by at most 1




Application of Menger’s Theorem



CSDR

*letA=44,..,4,,and B = B4, ..., B, be two family of sets. A
common system of distinct representatives (CSDR) is a set of m
elements that is both an system of distinct representatives (SDR) for

A and an SDR for B

* Given some family of sets X, a system of distinct representatives for
the sets in X is a ‘representative’ collection of distinct elements from

the sets of X Sy =1{2,8},
Sy = {8},
S3 =1{5,T},
Sy = 1{2,4,8},
S5 = 12,4},
The family X; = {S57,52.53.5;} does have an SDR. namely {2,8,7,4}. The
family Xo = {S7. 52,54, S5} does not have an SDR.

m(1.52, H) Let 54, 5>, ..., Sk be a collection of finite, nonempty
sets. This collection has SDR < for every t € [k], the union of any t of
these sets contains at least t elements
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Equivalent condition for CSDR

* Theorem (4.2.25, W; Ford-Fulkerson 1958) Families A = {44, ..., 4, }

and B = {By, ..., B,;,;} have a common system of distinct
representatives (CSDR) &

(UAi) n (UB]-> > |1+l - m

i€l jEJ
for every pair I,] € [m]




Lecture 7: Coloring

Shuai Li
John Hopcroft Center, Shanghai Jiao Tong University
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Motivation: Scheduling and coloring

* University examination timetabling
* Two courses linked by an edge if they have the
same students 1
* Meeting scheduling

* Two meetings are linked if they have same
member

129



Definitions

* Given a graph G and a positive integer k, a k-coloring is a function
K:V(G) — {1, ..., k} from the vertex set into the set of positive
integers less than or equal to k. If we think of the latter set as a set of
k “colors,” then K is an assignment of one color to each vertex.

* We say that K is a proper k-coloring of G if for every pair u, v of
adjacent vertices, K(u) # K(v) — that is, if adjacent vertices are
colored differently. If such a coloring exists for a graph G, we say that
G is k-colorable

* In a proper coloring, each color class is an independent set. Then
G is k-colorable & V(G) is the union of k independent sets




Chromatic number

* Given a graph G, the chromatic number of G, denoted by y(G), is the
smallest integer k such that G is k-colorable. G is said to be k-chromatic

* Examples

2 ifniseven,
X(Cn) —{ 3 ifnis odd,

2 tn=>2,
X(P”)—{ 1 ifn=1,
X(Kn) =n,
x(En) =1, «Empty graph
X ( Emm) = 2:

e (Ex5, S1.6.1, H) A graph G of order at least two is bipartite & it is 2-
colorable

A graph is bipartite < it contains no odd cycle 131



Bounds on Chromatic number

* Theorem (1.41, H) For any graph G of ordern, y(G) < n
* It is tight since y(K,,) = n
*x(G) =neG6 =K,



Greedy algorithm

* First label the vertices in some order—call them v, v, ..., v,

* Next, order the available colors (1,2, ..., 1) in some way
e Start coloring by assigning color 1 to vertex v,
* If v; and v, are adjacent, assign color 2 to vertex v,; otherwise, use color 1

* To color vertex v;, use the first available color that has not been used for any
of v;’s previously colored neighbors



Examples: Different orders result in different
number of colors
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Bound using the greedy algorithm

* Theorem (1.42, H) For any graph G, y(G) < A(G) + 1
The equality is obtained for complete graphs and odd cycles



Brooks’s theorem

(1.43, H; 5.1.22, W, 5.2.4, D; Brooks 1941)
If G is a connected graph that is neither an odd cycle or a complete
graph, then y(G) < A(G)

V1 2]

* >The Petersen graph is 3-colorable



Chromatic number and cligue number

* The clique number w(G) of a graph is defined as the order of the
largest complete graph that is a subgraph of G

* Example: w(G,) = 3, w(G,) = 4

AT

* Theorem (1.44, H; 5.1.7, W) For any graph G, x(G) = w(G)
* Example (5.1.8, W) For G = C,,41 V K, x(G) > w(G)




Chromatic number and independence
number

e Theorem (1.45, H; 5.1.7, W; Ex6, S1.6.2, H) For any graph G of order
n,

%S){(G)Sn+1—a(6')

The independence number of a graph G, denoted as
a(G), is the largest size of an independent set

In a proper coloring, each color class is an independent set. Then
G is k-colorable < V(@) is the union of k independent sets
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Extremal properties for k-chromatic graphs

. P;{oposition (5.2.5, W) Every k-chromatic graph with n vertices has at least
(2) edges

e Equality holds for a complete graph plus isolated vertices.

In a proper coloring, each color class is an independent set. Then
G is k-colorable < V(@) is the union of k independent sets

* The Turan graph T,, ,. is the complete r-partite graph with n vertices whose
partite sets differ by at most 1 vertex

* Every partite set has size |n/r] or [n/r]

 Lemma (5.2.8, W) Among simple r-partite (that is, r-colorable) graphs with
n vertices, the Turan graph is the unique graph with the most edges

* Turan’s Theorem (5.2.9, W; Turan 1941) Among the n-vertex simple K, 1 -
free graphs, T, ;- has the maximum number of edges



Color-critical

* If y(H) < x(G) = k for every proper subgraph H, then G is color-
critical or k-critical

* K, is the only 2-critical graph
K, is the only 1-critical graph

e (5.2.12, W) A graph with no isolated vertices is color-critical &
x(G —e) < y(G) for every edge e € E(G)

* Proposition (5.2.13, W) Let G be a k-critical graph
(a) For every v € V(G), there is a proper coloring such that v has a
unique color and other k — 1 colors all appear on N(v)
=20(G)=>k—-1
(b) For every e € E(G), every proper (k — 1)-coloring of G — e gives
the same color to the two endpoints of e




Color-critical has edge-connectivity

* Theorem (5.2.16, W, Dirac 1953) Every k-critical graph is (k — 1)-
edge-connected

* Lemma (5.2.15, W; Kainen) Let G be a graph with y(G) > k and let
X,Y be a partition of V(G). If G|X] and G|Y] are k-colorable, then
the edge cut [X, Y] has at least k edges T y

X3 Yy X2><Y2
G H

(3.1.16, W; 1.53, H; 2.1.1, D; Kénig 1931; Egevary 1931)
Let G be a bipartite graph. The size of a matching in G is
equal to the size of a vertex cover of its edges

(4.1.8, W) Every minimal disconnecting set of edges is an
edge cut




Color-critical and vertex cut set

* Let S be a set of vertices in a graph G. An S-lobe of ¢ is an induced
subgraph of G whose vertex set consists of S and the vertices of a
componentin G — S s

/ Ho
Ay (N
* Proposition (5.2.18, W) If G is k-critical, then G has no clique cutset.

In particular, if G has a cutset S = {x, y}, then x, y are non-adjacent
and G has an S-lobe H such that y(H + xy) = k




Chromatic number 4 has a K,-subdivision

* Theorem (5.2.20, W, Dirac 1952) Every graph with chromatic number
at least 4 contains a K,-subdivision
e :
< )¥

(5.2.18, W) If G is k-critical, then G has no clique cutset.
In particular, if G has a cutset S = {x, y}, then x, y are non-adjacent
and G has an S-lobe H such that y(H + xy) = k

a subdivision of K4

(4.2.3, W; Expansion Lemma) If G is a k-connected graph, and
G' is obtained from G by adding a new vertex y with at least k

neighbors in G, then G’ is k-connected @
G
e
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Hajos' conjecture

* Hajos' conjecture [1961]: Every k-chromatic graph contains a
subdivision of K,

* k = 2: Every 2-chromatic graph has a nontrivial path
* k = 3: Every 3-chromatic graph has a cycle

* [tis open fork = 5,6

* Exercise (Ex5.2.40, W) It is false for k = 7 or 8



Chromatic Polynomials



Definition and examples

* |t is brought up by George David Birkhoff in 1912 in an attempt to prove
the four color theorem

* Define y(G; k) to be the number of different colorings of a graph G using
at most k colors

* Examples:

 How many different colorings of K, using 4 colors?
e 4x3%x2X1
« x(Ky4) = 24

* How many different colorings of K, using 6 colors?
e 6X5X4X%3
« x(K4;6) = 360

* How many different colorings of K, using 2 colors?
0
* x(Ky;2) =0
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Examples

cifk>n
XK k) =k(k—1)--(k—n+1)

clfk<n
X(Kn;k) =0

* Gis k-colorable & y(G) <k  y(G;k) >0
* ¥(G) = min{k = 1: y(G; k) > 0}



G - bc é

Chromatic recurrence G '

a -
w Z
b ¢
w z
c X

*G—eandG/e ’ ’
G/ be

a
w Z
X @ ® ) b & ¢ -7
X

1?

FIGURE 1.98. Examples of the operations.

(1.48, H; 5.3.6, W) Let G be a graph and e be any edge of G.

x(G; k) =x(G—e; k) — x(G/e; k)

Then



Use chromatic recurrence to compute y(G; k)

 Example: Compute y(Ps; k) = k* — 3k3 +3k* — k
* Check: y(P3;1) =0, y(P53;2) = 2

red blue red blue blue red blue red
O 2 2 O @ e & 5]

FIGURE 1.102. Two 2-colorings of P,

e Example: What is y(K,, — e; k)?



More examples

* Path P,,_; has n — 1 edges (n vertices)
X(Pn_q;k) = k(k — 1)n_1
* Any tree T on n vertices
x(T5 k) = k(k—1)"™*
* Cycle C,,
X(Cos k) = (k= D"+(=1)"(k — 1)
* Whennisodd, y(C,;2) =0,x(C,;3) >0
 Whenniseven, y(C,;2) >0



Properties of chromatic polynomials

* Theorem (1.49, H; Ex 3, S1.6.4, H) Let G be a graph of order n
* v(G; k) is a polynomial in k of degree n
* The leading coefficient of y(G; k) is 1

* The constant term of y(G; k) is O
* If G has i components, then the coefficients of k9, ..., k'~ are 0
* (G is connected < the coefficient of k is nonzero

* The coefficients of y(G; k) alternate in sign

* The coefficient of the k™1 term is —|E(G))|
« AgraphGisatree & y(G; k) = k(k — 1)1

=2 1.10, 1.12, H) T is connected with n — 1 edges

* Agraph G iscomplete = y(G;k) =k(k—1)---(k—n+1)



Simplicial elimination ordering

* Roots for the chromatic polynomials?
Fundamental theorem of algebra

* A vertex of G is simplicial if its neighborhood in G induces a clique

* Asimplicial elimination ordering is an ordering v, ..., v for deletion of
vertices s.t. each vertex v; is a simplicial vertex of the graph reduced by

{ve, ..., v;}

* Chromatic polynomials

If we have colored v4, _1, then there are k — d (i) ways to color v;
where d(i) = |N(vl) N {vl, ., V;_1}|. Thus

G =[] te-aay

Nice factorization property!
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Examples

* |[n a tree, a simplicial elimination ordering is a successive deletion of leaves
e Another proof for y(T; k) = k(k — 1)1

* Example (5.3.13, W) v, ..., V4 is a simplicial elimination ordering.
The values d(i) are 0,1,1,2,3,2. Thus the chromatic Ve Vs .

polynomialis k(k —1)(k — 1)(k — 2)(k — 3)(k — 2) W

V1 (%) U3

* Exercise (Ex 5.3.19, W) There exists some graph without simplicial
elimination ordering but has a nice factorization form for chromatic
polynomial

* The existence of simplicial elimination ordering is a condition for the
chromatic polynomial having all real roots, but



Chordal graphs

* A chord of a cycle C is an edge not in C whose endpoints liein C

* A chordless cycle in G is a cycle of length at least 4 that has no chord

 Theorem (5.3.17, W, Dirac 1961) A simple graph has a
simplicial elimination ordering < it is a chordal graph (a

simple graph without chordless cycle) //‘;\
* TONCAS! ;
e Further X(Cpik) = (k—1)"+(=1)"(k - 1)

does not have a degree-1 decomposition

 Lemma (5.3.16, W) For every vertex x in a chordal graph, there is a
simplicial vertex of G among the vertices farthest from x

)

GI
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Motivation

Capulet

Square

Montague Hatfield

NS

'

Amphitheater Tavern

FIGURE 1.72. Original routes.
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Definition and examples

* A graph G is said to be planar if it can be drawn in the plane in such a
way that pairs of edges intersect only at vertices

* If G has no such representation, G is called nonplanar

* A drawing of a planar graph G in the plane in which edges intersect

only at vertices is called a planar representation (or a planar
embedding) of G

.44@ g

FIGURE 1.73. Examples of planar graphs. 157




Face

* Given a planar representation of a graph G, a face is a maximal region
(polygonal open set) of the plane in which any two points can be
joined by a curve that does not intersect any part of ¢

* The face R~ is called the outer (or exterior) face




Face - properties

* An edge can come into contact with
either one or two faces FIGURE 1.76. Edges e1, e, and e3 touch one face only.

* Example:
e Edge e; is only in contact with one face $4
* Edge e,, e3 are only in contact with S,
* Each of other edges is in contact with two faces

* An edge e bounds a face F if e comes into contact with F and with a
face different from F

* The bounded degree b(F) is the number of edges that bound the
face

* Example: b(S1) = b(S3) = 3,b(S,) =6
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Face - properties 2

* The length of a face in a plane graph G is the total length of the closed
walk(s) in G bounding the face

* Proposition (6.1.13, W) If [(F) denotes the length of face F in a plane
graph G, then 2|E(G)| = X L(F})

* Theorem (Restricted Jordan Curve Theorem) A simple closed
polygonal curve C consisting of finitely many segments partitions the
plane into exactly two faces, each having C as boundary



Bond

* An edge cut may contain another edge cut |
* Example: K, , or star graphs RS v
* A bond is a minimal nonempty edge cut

* Proposition (4.1.15, W) If G is a connected graph, then an edge cut F
iIs a bond & G — F has exactly two components



Dual graph

* The dual graph G™ of a plane graph G is a plane graph whose vertices
are faces of G and edges are those contacting two faces

 Theorem (6.1.14, W) Edges in a plane graph G form a cycle in ¢ &
the corresponding dual edges form a bond in G*




Dual graph of bipartite graph

 Theorem (6.1.16, W) TFAE for a plane graph G
* (a) G is bipartite
* (b) Every face of G has even length
* (c) The dual graph G™ is Eulerian

A graph is bipartite < it contains no odd cycle




The relationship between numbers of
vertices, edges and faces

* The number of vertices n n=4 n=1

m=4 m=9

* The number of edges m f=2 f=4
* The number of faces f

n=>5 n=38

® m="7 m=12

f=4 f=°

=8 n=10

m=12 m=9

F=6 f=1
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Fuler’s formula

(1.31, H; 6.1.21, W, Euler 1758) If (G is a connected planar
graph with n vertices, m edges, and f faces, then
n—m+f =2
 Need Lemma: (Ex4, S1.5.1, H) Every tree is planar

* (Ex6, S1.5.2, H) Let G be a planar graph with k components. Then
n—-m+f=k+1



Capulet Montague Hatfield

K3 3 is nonplanar

* Theorem (1.32, H) K3 3 is nonplanar Square Amphitheater Tavern

FIGURE 1.72. Original routes.
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Upper bound for m

(1.33, H; 6.1.23, W) If G is a planar graph withn = 3
vertices and m edges, then m < 3n — 6. Furthermore, if equality

holds, then every face is bounded by 3 edges. In this case, G is
maximal

* (Ex4, S1.5.2, H) Let G be a connected, planar, K5-free graph of order
n = 3. Then G has no more than 2n — 4 edges

* Corollary (1.34, H) K¢ is nonplanar
* Theorem (1.35, H) If G is a planar graph , then §(G) < 5
 (Ex5, S1.5.2, H) If G is bipartite planar graph, then §(G) < 4



Polyhedra



(Convex) Polyhedra Z2 [HI{A

* A polyhedron is a solid that is bounded by flat surfaces

y \
te

-

.
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Polyhedra are planar

M—— 1

FIGURE 1.81. A polyhedron and its graph.
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Properties

* Theorem (1.36, H) If a polyhedron has n vertices, m edges, and f
faces, then
n—m+/f =2

e Given a polyhedron P, define
p(P) = min{l(F): F is a face of P}

* Theorem (1.37, H) For all polyhedron P, 3 < p(P) <5



Regular polyhedron 1F 2 [HI4AE A Y @
* A regular polygon is one that is equilateral and <>E§ N X@

equiangular Equiateral Equiangular

1EZ2 1 (cycle), 51, 5 @ @ @
* A polyhedron is regular if its faces are mutually — e
congruent, regular polygons and if the number

of faces meeting at a vertex is the same for
every vertex

1EZ H K
MBS E2dE. SR ERAHSE




Regular polyhedron 1

* Theorem (1.38, H; 6.1.28, W) There are exactly Cube ‘9

five regular polyhedral
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Kuratowski’s Theorem



Kuratowski’s Theorem

* Theorem (1.39, H; Ex1, S1.5.4, H) A graph G is planar & every
subdivision of G is planar

* Theorem (1.40, H; Kuratowski 1930) A graph is planar < it contains
no subdivision of K3 3 or K5



The Four Color Problem



The Four Color Problem

* Q: Is it true that the countries on any given map can be colored with
four or fewer colors in such a way that adjacent countries are colored
differently?

* Theorem (Four Color Theorem) Every planar graph is 4-colorable

(Five Color Theorem) (1.47, H; 6.3.1, W) Every planar graph
is 5-colorable

(1.35, H) If G is a planar graph , then 6(G) < 5

* Exercise (Ex5, S1.6.3, H) Where does the proof go wrong for four
colors?
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The friendship riddle

* Does every set of six people contain three mutual acquaintances or
three mutual strangers?

Ann Bryan
< o
Fred o e Charlie
Evelyn David R(3,4)=R(4,3)=9
R(3,5)=R(5,3)=14
https://plus.maths.org/content/friends-and-strangers R(3,6)=R(6,3)=18

Wikipedia
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(classical) Ramsey number

* A 2-coloring of the edges of a graph G is any assignment of one of
two colors of each of the edges of ¢

* Let p and g be positive integers. The (classical) Ramsey number

associated with these integers, denoted by R (p, g), is defined to be
the smallest integer n such that every 2-coloring of the edges of K,

either contains a red K, or a blue K, as a subgraph

* It is a typical problem of extremal graph theory




Examples

Ann Bryan
L J ®

° R(l)g) — 1 Fred o \oChare
+ (Ex2, S1.8.1, H) R(L, k) = 1 /
° R(214) — 4 EVE'Y;_Bavid

. (Ex3,51.8.1, H)R(2,k) = k
* Theorem (1.61, H; 8.3.1, 8.3.9, W) R(3,3) = 6
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Examples (cont.)

* Theorem (1.62, H; 8.3.10, W) R(3,4) =9

' Theorem A finite graph G has an even number of vertices with odd

degree

* (Ex4,51.8.1,H) R(p,q) = R(q,p)

© 00 N OO g AW N -

ey
o

Values / known bounding ranges for Ramsey numbers R(r, s) (sequence A212954% in the OEIS)

3
1
2 3
6

5 6 7 8

1 1 1 1

5 6 7 8

14 18 23 28
25(10] 36-41 49-61 5911484
43-48 58-87 80-143 101-216

102-165 | 115['%l208 | 134('4l495
205-540 = 217-1031
282-1870

36
73-115
133-316
183-780
252-1713
329-3583
565-6588

10
1
10
40-42
92-149
149141442
204-1171
292-2826
343-6090
581-12677
798-23556

182



Bounds on Ramsey numbers

(1.64, H; 2.28, H; 8.3.11, W) If ¢ = 2,g = 2, then

R(p.q) <R(p—-1,9)+R(p,q—1)
Furthermore, if both terms on the RHS are even, then the inequality

is strict A finite graph G has an even number of vertices with odd
degree

— 2
* Theorem (1.63, H; 2.29, H) R(p, q) < (p +z )

p—1
« Theorem (1.65, H) For integer ¢ = 3, R(3,q) <

* Theorem (1.66, H; 8.3.12, W; Erdés and Szekeres 1935)
fp > 3, R(p,p) > |2P/?|

q>+3




Graph Ramsey Theory

* Given two graphs G and H, define the graph Ramsey number R(G, H)
to be the smallest value of n such that any 2-coloring of the edges of
K, contains either a red copy of G or a blue copy of H

* The classical Ramsey number R(p, q) would in this context be written as
R(K,, K,)

* Theorem (1.67, H) If G is a graph of order p and H is a graph of order

q,then R(G,H) < R(p,q)

* Theorem (1.68, H) Suppose the order of the largest

@)=

component of H is denoted as C(H). I 3{//
Then R(G,H) = (x(G) —1)(C(H)—1) +1 @
\\@



Graph Ramsey Theory (cont.)

(1.69, H; 8.3.14, W) R(T,,, K,) = (m — D(n—1) + 1

(1.45, H; Ex6 S1.6.2, H) For any graph G of order n,
< 1-—
a(G)_.x(G)._Tl+- a(G)

n (5.2.13, W) Let G be a k-critical graph
(a) For every v E V(G) there is a proper coloring such that v has a

unique color and other k — 1 colors all appear on N(v)
=0(G)=2k—-1

(1.16, H) Let T be a tree of order k + 1 with k edges. Let G
be a graph with 6(G) = k. Then G contains T as a subgraph
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More on pigeonhole principle

000 100

* Proposition (8.3.1, W) Among 6 people, it is possible to find 3 mutual
acquaintances or 3 mutual non-acquaintances

& For every simple graph with 6 vertices, there is a triangle in G orin G

 Theorem (8.3.2, W) If T is a spanning tree of the k-dimensional cube
Q:, then there is an edge of O, outside T whose addition to T creates

a cycle of length at least 2k @
T is a tree of order n U

& Any two vertices of T are linked by a unique path in T

* = Every spanning tree of Q; has diameter at least 2k — 1



More on pigeonhole principle 2

e Theorem (8.3.3, W; Erd8s—Szekeres 1935) Every list of > n? + 1
distinct numbers has a monotone sublist of length = n + 1

* Generalization.(r—1)(s—1) + 1

* Theorem (8.3.4, W; Graham-Kleitman 1973) In every labeling of
E (K,,) using distinct integers, there is a walk of length at leastn — 1
along which the labels strictly increase



