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Basics
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Graphs

• Definition  A graph 𝐺 is a pair (𝑉, 𝐸)
• 𝑉: set of vertices
• 𝐸: set of edges
• 𝑒 ∈ 𝐸 corresponds to a pair of endpoints 𝑥, 𝑦 ∈ 𝑉
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We mainly focus on
Simple graph:
No loops, no multi-edges



Graphs: All about adjacency

• Same graph or not

• Two graphs 𝐺! = 𝑉!, 𝐸! , 𝐺! = 𝑉", 𝐸" are isomorphic if there is a 
bijection 𝑓: 𝑉! → 𝑉" s.t.

𝑒 = 𝑎, 𝑏 ∈ 𝐸! ⟺ 𝑓 𝑒 := 𝑓(𝑎), 𝑓(𝑏) ∈ 𝐸"
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Example: Complete graphs

• There is an edge between every pair of vertices
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Example: Regular graphs

• Every vertex has the same degree
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Example: Bipartite graphs

• The vertex set can be partitioned into two sets 𝑋 and 𝑌 such that 
every edge in 𝐺 has one end vertex in 𝑋 and the other in 𝑌
• Complete bipartite graphs
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Example (1A, L): Peterson graph

• Show that the following two graphs are same/isomorphic
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Example: Peterson graph (cont.)

• Show that the following two graphs are same/isomorphic
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Subgraphs

• A subgraph of a graph 𝐺 is a graph 𝐻 such that 
𝑉 𝐻 ⊆ 𝑉 𝐺 , 𝐸 𝐻 ⊆ 𝐸 𝐺

and the ends of an edge 𝑒 ∈ 𝐸(𝐻) are the same as its ends in 𝐺
• 𝐻 is a spanning subgraph when 𝑉(𝐻) = 𝑉(𝐺)
• The subgraph of 𝐺 induced by a subset 𝑆 ⊆ 𝑉(𝐺) is the subgraph whose 

vertex set is 𝑆 and whose edges are all the edges of 𝐺 with both ends in 𝑆
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Paths (路径)

• A path is a non-empty alternating sequence 𝑣#𝑒!𝑣!𝑒"…𝑒$𝑣$
where vertices are all distinct
• Or it can be written as 𝑣!𝑣"…𝑣# in simple graphs

• 𝑃$: path of length 𝑘 (the number of edges)
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Walk (游走)

• A walk is a non-empty alternating sequence 𝑣#𝑒!𝑣!𝑒"…𝑒$𝑣$
• The vertices not necessarily distinct
• The length = the number of edges

• Proposition (1.2.5, W) Every 𝑢-𝑣 walk contains a 𝑢-𝑣 path
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Cycles (环)

• If 𝑃 = 𝑥#𝑥!…𝑥$%! is a path and 𝑘 ≥ 3, then the graph 𝐶 ≔ 𝑃 +
𝑥$%!𝑥# is called a cycle
• 𝐶$: cycle of length 𝑘 (the number of edges/vertices)

• Proposition (1.2.15, W) Every closed odd walk contains an odd cycle
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Neighbors and degree

• Two vertices 𝑎 ≠ 𝑏 are called adjacent if they are joined by an edge
• 𝑁(𝑥): set of all vertices adjacent to 𝑥

• neighbors of 𝑥
• A vertex is isolated vertex if it has no neighbors

• The number of edges incident with a vertex 𝑥 is called the degree of 𝑥
• A loop contributes 2 to the degree

• A graph is finite when both 𝐸(𝐺) and 𝑉(𝐺) are finite sets
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Handshaking Theorem (Euler 1736)

• Theorem  A finite graph 𝐺 has an even number of vertices with odd 
degree
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Proof

• Theorem  A finite graph 𝐺 has an even number of vertices with 
odd degree.
• Proof  The degree of 𝑥 is the number of times it appears 

in the right column. Thus

@
'∈)(+)

deg(𝑥) = 2 𝐸(𝐺)
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Degree

• Minimal degree of 𝐺: 𝛿 𝐺 = min 𝑑 𝑣 : 𝑣 ∈ 𝑉
• Maximal degree of 𝐺: ∆ 𝐺 = max 𝑑 𝑣 : 𝑣 ∈ 𝑉

• Average degree of 𝐺: 𝑑 𝐺 = !
)
∑-∈) 𝑑(𝑣) =

" .
)

• All measure the `density’ of a graph

• 𝑑(𝐺) ≥ 𝛿(𝐺)
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Minimal degree guarantees long paths and 
cycles
• Proposition (1.3.1, D) Every graph 𝐺 contains a path of length 𝛿(𝐺)

and a cycle of length at least 𝛿 𝐺 + 1, provided 𝛿(𝐺) ≥ 2. 
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Distance and diameter

• The distance 𝑑+(𝑥, 𝑦) in 𝐺 of two vertices 𝑥, 𝑦 is the length of a 
shortest 𝑥~𝑦 path
• if no such path exists, we set 𝑑 𝑥, 𝑦 ≔ ∞

• The greatest distance between any two vertices in 𝐺 is the diameter 
of 𝐺

diam 𝐺 = max
',0∈)

𝑑(𝑥, 𝑦)
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Radius and diameter

• A vertex is central in 𝐺 if its greatest distance from other vertex is 
smallest, such greatest distance is the radius of 𝐺

rad G ≔ min
'∈)

max
0∈)

𝑑(𝑥, 𝑦)

• Proposition (1.4, H; Ex1.6, D) rad(𝐺) ≤ diam(𝐺) ≤ 2 rad(𝐺)
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Radius and maximum degree control graph 
size
• Proposition (1.3.3, D) A graph 𝐺 with radius at most 𝑟 and maximum 

degree at most ∆≥ 3 has fewer than ∆
∆%"

(∆ − 1)2.
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Girth

• The minimum length of a cycle in a graph 𝐺 is the girth 𝑔(𝐺) of 𝐺

• Example: The Peterson graph is the unique 5-cage
• cubic graph (every vertex has degree 3)
• girth = 5
• smallest graph satisfies the above properties
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Girth (cont.)

• A tree has girth ∞
• Note that a tree can be colored with two different 

colors 
•⟹ A graph with large girth has small chromatic 

number?
• Unfortunately NO!
• Theorem (Erdős, 1959) For all 𝑘, 𝑙, there exists a 

graph 𝐺 with 𝑔 𝐺 > 𝑙 and 𝜒 𝐺 > 𝑘

24



Girth and diameter

• Proposition (1.3.2, D) Every graph 𝐺 containing a cycle satisfies 
𝑔 𝐺 ≤ 2 diam 𝐺 + 1

• When the equality holds?
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Girth and minimal degree lower bounds 
graph size

• 𝑛# 𝛿, 𝑔 ≔ ]
1 + 𝛿 ∑34#2%!(𝛿 − 1)3 , if 𝑔 = 2𝑟 + 1 is odd
2∑34#2%!(𝛿 − 1)3 , if 𝑔 = 2𝑟 is even

• Exercise (Ex7, ch1, D) Let 𝐺 be a graph. If 𝛿(𝐺) ≥ 𝛿 ≥ 2 and 𝑔(𝐺) ≥
𝑔, then 𝐺 ≥ 𝑛# 𝛿, 𝑔
• Corollary (1.3.5, D) If 𝛿(𝐺) ≥ 3, then 𝑔 𝐺 < 2 log"|𝐺|

26



Triangle-free upper bounds # of edges

• Theorem (1.3.23, W, Mantel 1907) The maximum number of edges in 
an 𝑛-vertex triangle-free simple graph is 𝑛"/4

• The bound is best possible
• There is a triangle-free graph with 𝑛"/4 edges: 𝐾 5/" , 5/"

• Extremal problems
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Connected, connected component

• A graph 𝐺 is connected if 𝐺 ≠ ∅ and any two of its vertices are linked 
by a path
• A maximal connected subgraph of 𝐺 is a (connected) component
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Quiz

• Problem (1B, L) Suppose 𝐺 is a graph on 10 vertices that is not 
connected. Prove that 𝐺 has at most 36 edges. Can equality occur?
• More general (Ex9, S1.1.2, H) Let 𝐺 be a graph of order 𝑛 that is not 

connected. What is the maximum size of 𝐺?
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Connected vs. minimal degree

• Proposition (1.3.15, W) If 𝛿(𝐺) ≥ 5%!
"

, then 𝐺 is connected

• (Ex16, S1.1.2, H; 1.3.16, W)
If 𝛿(𝐺) ≥ 5%"

"
, then 𝐺 need not be connected

• Extremal problems
• “best possible” “sharp”
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Add/delete an edge

• Components are pairwise disjoint; no two share a vertex
• Adding an edge decreases the number of components by 0 or 1
• ⇒ deleting an edge increases the number of components by 0 or 1

• Proposition (1.2.11, W) 
Every graph with 𝑛 vertices and 𝑘 edges has at least 𝑛 − 𝑘
components
• An edge 𝑒 is called a bridge if the graph 𝐺 − 𝑒 has more components
• Proposition (1.2.14, W) 

An edge 𝑒 is a bridge ⟺𝑒 lies on no cycle of 𝐺
• Or equivalently, an edge 𝑒 is not a bridge ⟺𝑒 lies on a cycle of 𝐺
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Cut vertex and connectivity

• A node 𝑣 is a cut vertex if the graph 𝐺 − 𝑣 has more 
components
• A proper subset S of vertices is a vertex cut set if the 

graph 𝐺 − 𝑆 is disconnected, or trivial (a graph of 
order 0 or 1)
• The connectivity, 𝜅(𝐺), is the minimum size of a cut 

set of 𝐺
• The graph is 𝑘-connected for any 𝑘 ≤ 𝜅(𝐺)
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Connectivity properties

• 𝜅 𝐾5 = 𝑛 − 1
• If 𝐺 is disconnected, 𝜅 𝐺 = 0
• ⇒ A graph is connected ⟺𝜅 𝐺 ≥ 1

• If 𝐺 is connected, non-complete graph of order 𝑛, then 
1 ≤ 𝜅 𝐺 ≤ 𝑛 − 2
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Connectivity properties (cont.)

• 𝜅 𝐺 ≥ 2⟺𝐺 is connected and has no cut vertices
• A vertex lies on a cycle ⇏ it is not a cut vertex
• ⇒ (Ex13, S1.1.2, H) Every vertex of a connected graph 𝐺 lies on at least one 

cycle ⇏ 𝜅 𝐺 ≥ 2
• (Ex14, S1.1.2, H) 𝜅 𝐺 ≥ 2 implies 𝐺 has at least one cycle

• (Ex12, S1.1.2, H) 𝐺 has a cut vertex vs. 𝐺 has a bridge
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Connectivity and minimal degree

• (Ex15, S1.1.2, H) 
• 𝜅 𝐺 ≤ 𝛿(𝐺)
• If 𝛿 𝐺 ≥ 𝑛 − 2, then 𝜅 𝐺 = 𝛿(𝐺)
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Edge-connectivity

• A proper subset 𝐹 ⊂ 𝐸 is edge cut set if the graph 𝐺 − 𝐹 is 
disconnected
• The edge-connectivity 𝜆(𝐺) is the minimal size of edge cut set
• 𝜆 𝐺 = 0 if 𝐺 is disconnected
• Proposition (1.4.2, D) If 𝐺 is non-trivial, then 𝜅(𝐺) ≤ 𝜆(𝐺) ≤ 𝛿(𝐺)
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Bipartite graphs

• Theorem (1.2.18, W, Kőnig 1936)
A graph is bipartite ⟺ it contains no odd cycle
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Complete graph is a union of bipartite graphs

• The union of graphs 𝐺!, … , 𝐺$, written 𝐺! ∪⋯∪ 𝐺$, is the graph with 
vertex set ⋃34!

$ 𝑉(𝐺3) and edge set ⋃34!
$ 𝐸(𝐺3)

• Consider an air traffic system with 𝑘 airlines
• Each pair of cities has direct service from at least one airline
• No airline can schedule a cycle through an odd number of cities
• Then, what is the maximum number of cities in the system?

• Theorem (1.2.23, W) The complete graph 𝐾5 can be expressed as the 
union of 𝑘 bipartite graphs ⟺𝑛 ≤ 2$
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Bipartite subgraph is large

• Theorem (1.3.19, W) Every loopless graph 𝐺 has a bipartite subgraph 
with at least 𝐸 /2 edges
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Trees

• A tree is a connected graph 𝑇 with no cycles
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Properties

• Recall that 
• ⇒(Ex 3, S1.3.1, H) A tree of order 𝑛 ≥ 2 is a bipartite graph

• Recall that 
• ⇒ Every edge in a tree is a bridge
• 𝑇 is a tree ⟺𝑇 is minimally connected, i.e. 𝑇 is connected but 𝑇 − 𝑒

is disconnected for every edge 𝑒 ∈ 𝑇
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Equivalent definitions (Theorem 1.5.1, D)

• 𝑇 is a tree of order 𝑛
⇔ Any two vertices of 𝑇 are linked by a unique path in 𝑇
⇔ 𝑇 is minimally connected
• i.e. 𝑇 is connected but 𝑇 − 𝑒 is disconnected for every edge 𝑒 ∈ 𝑇

⇔𝑇 is maximally acyclic
• i.e. 𝑇 contains no cycle but 𝑇 + 𝑥𝑦 does for any non-adjacent vertices 𝑥, 𝑦 ∈
𝑇

⇔ (Theorem 1.10, 1.12, H) 𝑇 is connected with 𝑛 − 1 edges
⇔ (Theorem 1.13, H) 𝑇 is acyclic with 𝑛 − 1 edges
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Leaves of tree

• A vertex of degree 1 in a tree is called a leaf
• Theorem (1.14, H; Ex9, S1.3.2, H) Let 𝑇 be a tree of order 𝑛 ≥ 2. Then 
𝑇 has at least two leaves
• (Ex3, S1.3.2, H) Let 𝑇 be a tree with max degree ∆. Then 𝑇 has at least 
∆ leaves
• (Ex10, S1.3.2, H) Let 𝑇 be a tree of order 𝑛 ≥ 2. Then the number of 

leaves is
2 + @

-:8(-)9:

𝑑 𝑣 − 2

• (Ex8, S1.3.2, H) Every nonleaf in a tree is a cut vertex
• Every leaf node is not a cut vertex
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The center of a tree is a vertex or ‘an edge’

• Theorem (1.15, H) In any tree, the center is either a single vertex or a 
pair of adjacent vertices
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Any tree can be embedded in a ‘dense’ graph

• Theorem (1.16, H) Let 𝑇 be a tree of order 𝑘 + 1 with 𝑘 edges. Let 𝐺
be a graph with 𝛿(𝐺) ≥ 𝑘. Then 𝐺 contains 𝑇 as a subgraph
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Spanning tree

• Given a graph 𝐺 and a subgraph 𝑇, 𝑇 is a spanning tree of 𝐺 if 𝑇 is a 
tree that contains every vertex of 𝐺
• Example: A telecommunications company tries to lay cable in a new 

neighbourhood
• Proposition (2.1.5c, W) Every connected graph contains a spanning 

tree
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Cayley’s tree formula

• Theorem (1.18, H; 2.2.3, W). There 
are 𝑛5%" distinct labeled trees of 
order 𝑛
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Wiener index

• In a communication network, large diameter may be acceptable if 
most pairs can communicate via short paths. This leads us to study 
the average distance instead of the maximum
• Wiener index 𝐷 𝐺 = ∑;,-∈)(+)𝑑+(𝑢, 𝑣)
• Theorem (2.1.14, W) Among trees with 𝑛 vertices, the Wiener index 
𝐷(𝑇) is minimized by stars and maximized by paths, both uniquely
• Over all connected 𝑛-vertex graphs, 𝐷 𝐺 is minimized by 𝐾5 and 

maximized (2.1.16, W) by paths 
• (Lemma 2.1.15, W) If 𝐻 is a subgraph of 𝐺, then 𝑑$(𝑢, 𝑣) ≤ 𝑑%(𝑢, 𝑣)
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Prefix coding

• A binary tree is a rooted plane tree where each vertex has at most 
two children
• Given large computer files and limited storage, we want to encode 

characters as binary lists to minimize (expected) total length
• Prefix-free coding: no code word is an initial portion of another

• Example: 11001111011
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Huffman’s Algorithm (2.3.13, W)

• Input: Weights (frequencies or probabilities) 𝑝!, … , 𝑝5
• Output: Prefix-free code (equivalently, a binary tree)
• Idea: Infrequent items should have longer codes; put infrequent items 

deeper by combining them into parent nodes.
• Recursion: replace the two least likely items with probabilities 𝑝, 𝑝′

with a single item of weight 𝑝 + 𝑝′
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Example (2.3.14, W)
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a 5

b 1

c 1

d 7

e 8

f 2

g 3

h 6

a 5 100

b 1 00000

c 1 00001

d 7 01

e 8 11

f 2 0001

g 3 001

h 6 101
The average length is !×#$!$!$%×&$⋯

##
= #(

))
< 3



Huffman coding is optimal

• Theorem (2.3.15, W) Given a probability distribution 𝑝3 on 𝑛 items, 
Huffman’s Algorithm produces the prefix-free code with minimum 
expected length
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Huffman coding and entropy

• The entropy of a discrete probability distribution 𝑝3 is that

𝐻 𝑝 = −@
3

𝑝3 log" 𝑝3

• Exercise (Ex2.3.31, W) 𝐻(𝑝) ≤ average length of Huffman coding ≤
𝐻(𝑝) + 1
• Exercise (Ex2.3.30, W) When each 𝑝3 is a power of ½, average length 

of Huffman coding is 𝐻(𝑝)
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Eulerian circuit

• A closed walk through a graph using every edge once is called an 
Eulerian circuit
• A graph that has such a walk is called an Eulerian graph

• Theorem (1.2.26, W) A graph 𝐺 is Eulerian ⟺ it has at most one 
nontrivial component and its vertices all have even degree
• (possibly with multiple edges)
• Proof  “⟹” That 𝐺 must be connected is obvious.

Since the path enters a vertex through some edge and 
leaves by another edge, it is clear that all degrees must be even

56



Key lemma

• Lemma (1.2.25, W) If every vertex of a graph 𝐺 has degree at least 2, 
then 𝐺 contains a cycle.
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Eulerian circuit

•
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Other properties

• Proposition (1.2.27, W) Every even graph decomposes into cycles

• The necessary and sufficient condition for a directed Eulerian circuit is 
that the graph is connected and that each vertex has the same ‘in-
degree’ as ‘out-degree’
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TONCAS

• TONCAS: The obvious necessary condition is also sufficient
•

• Proposition (1.3.28, W) The nonnegative integers 𝑑!, … , 𝑑5 are the 
vertex degrees of some graph ⟺∑34!5 𝑑3 is even
• (Possibly with loops)
• Otherwise (2,0,0) is not realizable
•
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Hamiltonian path/circuits

• A path 𝑃 is Hamiltonian if 𝑉 𝑃 = 𝑉(𝐺)
• Any graph contains a Hamiltonian path is called traceable

• A cycle 𝐶 is called Hamiltonian if it spans all vertices of 𝐺
• A graph is called Hamiltonian if it contains a Hamiltonian circuit

• In the mid-19th century, Sir William Rowan Hamilton tried to 
popularize the exercise of finding such a closed path in the graph of 
the dodecahedron (正十二面体)
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Degree parity is not a criterion

• Hamiltonian graphs
• all even degrees 𝐶"!
• all odd degrees 𝐾"!
• a mixture 𝐺"

• non-Hamiltonian graphs
• all even 𝐺)
• all odd 𝐾*,,
• mixed 𝑃-
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Example

• The Petersen graph has a Hamiltonian path but no Hamiltonian cycle

• Determining whether such paths and cycles exist in graphs is 
the Hamiltonian path problem, which is NP-complete
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P, NP, NPC, NP-hard

• P  The general class of questions for which some 
algorithm can provide an answer in polynomial 
time
• NP (nondeterministic polynomial time) The class 

of questions for which an answer can be verified in 
polynomial time
• NP-Complete

1. c is in NP
2. Every problem in NP is reducible to c in polynomial 

time
• NP-hard

• c is in NP
• Every problem in NP is reducible to c in polynomial time
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Large minimal degree implies Hamiltonian

• Theorem (1.22, H, Dirac) Let 𝐺 be a graph of order 𝑛 ≥ 3. If 𝛿(𝐺) ≥ 𝑛/2, 
then 𝐺 is Hamiltonian

• The bound is tight
(Ex12b, S1.4.3, H) 𝐺 = 𝐾!,!#$ is not Hamiltonian
Exercise The condition when 𝐾!,% is Hamiltonian
• The condition is not necessary

• 𝐶! is Hamiltonian but with small minimum (and even maximum) degree
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Generalized version

• Exercise (Theorem 1.23, H, Ore; Ex3, S1.4.3, H) Let 𝐺 be a graph of 
order 𝑛 ≥ 3. If deg 𝑥 + deg(𝑦) ≥ 𝑛 for all pairs of nonadjacent 
vertices 𝑥, 𝑦, then 𝐺 is Hamiltonian
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Independence number & Hamiltonian

• A set of vertices in a graph is called independent if 
they are pairwise nonadjacent
• The independence number of a graph 𝐺, denoted as 
𝛼(𝐺), is the largest size of an independent set
• Example: 𝛼 𝐺! = 2, 𝛼 𝐺" = 3
• Theorem (1.24, H) Let 𝐺 be a connected graph of 

order 𝑛 ≥ 3. If 𝜅(𝐺) ≥ 𝛼(𝐺), then 𝐺 is Hamiltonian

67



Independence number & Hamiltonian 2

• The result is tight: 𝜅(𝐺) ≥ 𝛼(𝐺)−1 is not enough
• 𝐾.,./": 𝜅 = r, 𝛼 = 𝑟 + 1
• Exercise (Ex4, S1.4.3, H) Peterson graph: 𝜅 = 3, 𝛼 = 4

68



Pattern-free & Hamiltonian

• 𝐺 is 𝐻-free if 𝐺 doesn’t contain a copy of 𝐻 as induced subgraph
• Theorem (1.25, H) If 𝐺 is 2-connected and 𝐾!,:, 𝑍! -free, then 𝐺 is 

Hamiltonian

• The condition 2-connectivity is necessary
• (Ex2, S1.4.3, H) If 𝐺 is Hamiltonian, then 𝐺 is 2-connected
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Motivating example
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Definitions

• A matching is a set of independent edges, in which no pair of edges 
shares a vertex
• The vertices incident to the edges of a matching 𝑀 are 𝑀-saturated 

(饱和的); the others are 𝑀-unsaturated
• A perfect matching in a graph is a matching that saturates every 

vertex
• Example (3.1.2, W) The number of perfect matchings in 𝐾5,5 is 𝑛!
• Example (3.1.3, W) The number of perfect matchings in 𝐾"5 is 

𝑓5 = 2𝑛 − 1 2𝑛 − 3 ⋯1 = 2𝑛 − 1 ‼
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Maximal/maximum matchings 极大/最大

• A maximal matching in a graph is a matching that cannot be enlarged 
by adding an edge
• A maximum matching is a matching of maximum size among all 

matchings in the graph
• Example: 𝑃:, 𝑃<

• Every maximum matching is maximal, but not every maximal 
matching is a maximum matching
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Symmetric difference of matchings

• The symmetric difference of 𝑀,𝑀′ is 𝑀∆𝑀= = (𝑀 −𝑀′) ∪ (𝑀= −𝑀)
• Lemma (3.1.9, W) Every component of the symmetric difference of 

two matchings is a path or an even cycle
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Maximum matching and augmenting path

• Given a matching 𝑀, an 𝑀-alternating path is a path 
that alternates between edges in 𝑀 and edges not in 
𝑀
• An 𝑀-alternating path whose endpoints are 𝑀-

unsaturated is an 𝑀-augmenting path
• Theorem (3.1.10, W; 1.50, H; Berge 1957) A matching 
𝑀 in a graph 𝐺 is a maximum matching in 𝐺 ⇔ 𝐺 has 
no 𝑀-augmenting path
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Hall’s theorem (TONCAS)

• Theorem (3.1.11, W; 1.51, H; 2.1.2, D; Hall 1935) Let 𝐺 be a bipartite 
graph with partition 𝑋, 𝑌.
𝐺 contains a matching of 𝑋⇔ 𝑁(𝑆) ≥ 𝑆 for all 𝑆 ⊆ 𝑋

• Exercise. Read the other two proofs in Diestel.
• Corollary (3.1.13, W; 2.1.3, D) Every 𝑘-regular (𝑘 > 0) bipartite graph 

has a perfect matching
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General regular graph

• Corollary (2.1.5, D) Every regular graph of positive even degree has a 
2-factor
• A 𝑘-regular spanning subgraph is called a 𝑘-factor
• A perfect matching is a 1-factor
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• Given some family of sets 𝑋, a system of 
distinct representatives for the sets in 𝑋
is a ‘representative’ collection of distinct 
elements from the sets of 𝑋

• Theorem(1.52, H) Let 𝑆!, 𝑆", … , 𝑆$ be a collection of finite, nonempty 
sets. This collection has SDR ⇔ for every 𝑡 ∈ [𝑘], the union of any 𝑡 of 
these sets contains at least 𝑡 elements

Application to SDR
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König Theorem
Augmenting Path Algorithm
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Vertex cover

• A set 𝑈 ⊆ 𝑉 is a (vertex) cover of 𝐸 if every edge in 𝐺 is incident with 
a vertex in 𝑈
• Example: 
• Art museum is a graph with hallways are edges and corners are nodes
• A security camera at the corner will guard the paintings on the hallways
• The minimum set to place the cameras?
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König-Egeváry Theorem (Min-max theorem)

• Theorem (3.1.16, W; 1.53, H; 2.1.1, D; König 1931; Egeváry 1931)
Let 𝐺 be a bipartite graph. The maximum size of a matching in 𝐺 is 
equal to the minimum size of a vertex cover of its edges
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Weighted Bipartite Matching
Hungarian Algorithm
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Weighted bipartite matching

• The maximum weighted matching problem is to seek a perfect matching 𝑀
to maximize the total weight 𝑤(𝑀)
• Bipartite graph

• W.l.o.g. Assume the graph is 𝐾!,! with 𝑤#,$ ≥ 0 for all 𝑖, 𝑗 ∈ 𝑛
• Optimization:

max𝑤(𝑀%)=2
#,$

𝑎#,$𝑤#,$

𝑠. 𝑡. 𝑎#,& +⋯+ 𝑎#,! ≤ 1 for any 𝑖
𝑎&,$ +⋯+ 𝑎!,$ ≤ 1 for any 𝑗
𝑎#,$ ∈ 0,1

• Integer programming
• General IP problems are NP-Complete
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(Weighted) cover

• A (weighted) cover is a choice of labels 𝑢!, … , 𝑢5 and 𝑣!, … , 𝑣5 such 
that 𝑢3 + 𝑣> ≥ 𝑤3,> for all 𝑖, 𝑗
• The cost 𝑐(𝑢, 𝑣) of a cover (𝑢, 𝑣) is ∑0 𝑢0 + ∑1 𝑣1
• The minimum weighted cover problem is that of finding a cover of minimum 

cost
• Optimization problem

min 𝑐 𝑢, 𝑣 =@
3

𝑢3 +@
>

𝑣>

𝑠. 𝑡. 𝑢3 + 𝑣> ≥ 𝑤3,> for any 𝑖, 𝑗
𝑢3 , 𝑣> ≥ 0 for any 𝑖, 𝑗
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Duality

• Weak duality theorem
• For each feasible solution 𝑎 and 𝑢, 𝑣

M
0,1

𝑎0,1𝑤0,1 ≤M
0

𝑢0 +M
1

𝑣1

thus max∑0,1 𝑎0,1𝑤0,1 ≤ min∑0 𝑢0 + ∑1 𝑣1
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(IP)

max5
*,,

𝑎*,,𝑤*,,

𝑠. 𝑡. 𝑎*,) +⋯+ 𝑎*,- ≤ 1 for any 𝑖
𝑎),, +⋯+ 𝑎-,, ≤ 1 for any 𝑗
𝑎*,, ∈ 0,1

(Linear programming)

max5
*,,

𝑎*,,𝑤*,,

𝑠. 𝑡. 𝑎*,) +⋯+ 𝑎*,- ≤ 1 for any 𝑖
𝑎),, +⋯+ 𝑎-,, ≤ 1 for any 𝑗
𝑎*,, ≥ 0

(Dual)

min5
*

𝑢* +5
,

𝑣,

𝑠. 𝑡. 𝑢* + 𝑣, ≥ 𝑤*,, for any 𝑖, 𝑗
𝑢* , 𝑣, ≥ 0



Duality (cont.)

• Strong duality theorem
• If one of the two problems has an optimal solution, so does the other one and 

that the bounds given by the weak duality theorem are tight

maxM
0,1

𝑎0,1𝑤0,1 = minM
0

𝑢0 +M
1

𝑣1

• Lemma (3.2.7, W) For a perfect matching 𝑀 and cover (𝑢, 𝑣) in a 
weighted bipartite graph 𝐺, 𝑐 𝑢, 𝑣 ≥ 𝑤 𝑀 .
𝑐(𝑢, 𝑣) = 𝑤(𝑀)⇔ 𝑀 consists of edges 𝑥3𝑦> such that 𝑢3 + 𝑣> = 𝑤3,>
In this case, 𝑀 and (𝑢, 𝑣) are optimal.
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Equality subgraph

• The equality subgraph 𝐺;,- for a cover (𝑢, 𝑣) is the spanning subgraph 
of 𝐾5,5 having the edges 𝑥3𝑦> such that 𝑢3 + 𝑣> = 𝑤3,>
• So if 𝑐(𝑢, 𝑣) = 𝑤(𝑀) for some perfect matching 𝑀, then 𝑀 is composed of 

edges in 𝐺L,M
• And if 𝐺L,M contains a perfect matching 𝑀, then (𝑢, 𝑣) and 𝑀 (whose weights 

are 𝑢0 + 𝑣1) are both optimal 
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Back to (unweighted) bipartite graph

• The weights are binary 0,1
• Hungarian algorithm always maintain integer labels in the weighted 

cover, thus the solution will always be 0,1
• The vertices receiving label 1 must cover the weight on the edges, 

thus cover all edges
• So the solution is a minimum vertex cover
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Matchings in General Graphs
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Perfect matchings

• 𝐾"5 , 𝐶"5 , 𝑃"5 have perfect matchings
•

• Theorem(1.58, H) If 𝐺 is a graph of order 2𝑛 such that 𝛿(𝐺) ≥ 𝑛, then 
𝐺 has a perfect matching

90



Tutte’s Theorem (TONCAS)

• Let 𝑞(𝐺) be the number of connected components with odd order
• Theorem (1.59, H; 2.2.1, D; 3.3.3, W) 

Let 𝐺 be a graph of order 𝑛 ≥ 2. 𝐺 has a perfect matching ⇔𝑞(𝐺 −
𝑆) ≤ 𝑆 for all 𝑆 ⊆ 𝑉

91



Petersen’s Theorem

• Theorem (1.60, H; 2.2.2, D;3.3.8, W) 
Every bridgeless, 3-regular graph contains a perfect matching
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Find augmenting paths in general graphs

• Different from bipartite graphs, a vertex can belong to both S and T
• Example: How to explore from 𝑀-unsaturated point 𝑢

• Flower/stem/blossom
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Lifting
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Edmonds’ blossom algorithm (3.3.17, W)

• Input: A graph 𝐺, a matching 𝑀 in 𝐺, an 𝑀-unsaturated vertex 𝑢
• Idea: Explore M-alternating paths from 𝑢, recording for each vertex the vertex from 

which it was reached, and contracting blossoms when found
• Maintain sets 𝑆 and 𝑇 analogous to those in Augmenting Path Algorithm, with 𝑆 consisting of 𝑢

and the vertices reached along saturated edges
• Reaching an unsaturated vertex yields an augmentation.

• Initialization: 𝑆 = {𝑢} and 𝑇 = ∅
• Iteration: If 𝑆 has no unmarked vertex, stop; there is no 𝑀-augmenting path from 𝑢

• Otherwise, select an unmarked 𝑣 ∈ 𝑆. To explore from 𝑣, successively consider each 𝑦 ∈ 𝑁(𝑣) s.t.
𝑦 ∉ 𝑇
• If 𝑦 is unsaturated by 𝑀, then trace back from 𝑦 (expanding blossoms as needed) to report an 𝑀-augmenting 
𝑢, 𝑦-path

• If 𝑦 ∈ 𝑆, then a blossom has been found. Suspend the exploration of 𝑣 and contract the blossom, replacing its 
vertices in 𝑆 and 𝑇 by a single new vertex in 𝑆. Continue the search from this vertex in the smaller graph.

• Otherwise, 𝑦 is matched to some 𝑤 by 𝑀. Include 𝑦 in 𝑇 (reached from 𝑣), and include 𝑤 in 𝑆 (reached from 𝑦)
• After exploring all such neighbors of 𝑣, mark 𝑣 and iterate
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Illustration
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Example
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Example 2
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Example 2 (cont.)
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Lecture 6: More on 
Connectivity

Shuai Li
John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS445/index.html
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Vertex cut set and connectivity

• A proper subset 𝑆 of vertices is a vertex cut set if the graph 𝐺 − 𝑆 is 
disconnected
• The connectivity, 𝜅(𝐺), is the minimum size of a vertex set 𝑆 of 𝐺 such that 
𝐺 − 𝑆 is disconnected or has only one vertex
• The graph is 𝑘-connected if 𝑘 ≤ 𝜅(𝐺)

• 𝜅 𝐾0 : = 𝑛 − 1
• If 𝐺 is disconnected, 𝜅 𝐺 = 0

• ⇒ A graph is connected ⟺𝜅 𝐺 ≥ 1
• If 𝐺 is connected, non-complete graph of order 𝑛, then 

1 ≤ 𝜅 𝐺 ≤ 𝑛 − 2
• For convention, 𝜅 𝐾$ = 0
• Example (4.1.3, W) For 𝑘-dimensional cube 𝑄1 = 0,1 1, 𝜅 𝑄1 = 𝑘
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Edge-connectivity

• A disconnecting set of edges is a set 𝐹 ⊆ 𝐸(𝐺) such that 𝐺 − 𝐹 has 
more than one component
• A graph is 𝑘-edge-connected if every disconnecting set has at least 𝑘 edges 
• The edge-connectivity of 𝐺, written 𝜆(𝐺), is the minimum size of a 

disconnecting set

• Given 𝑆, 𝑇 ⊆ 𝑉(𝐺), we write [𝑆, 𝑇] for the set of edges having one 
endpoint in 𝑆 and the other in 𝑇
• An edge cut is an edge set of the form [𝑆, 𝑆N] where 𝑆 is a nonempty proper 

subset of 𝑉(𝐺)
• Every edge cut is a disconnecting set, but not vice versa
• Remark (4.1.8, W) Every minimal disconnecting set of edges is an 
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Connectivity and edge-connectivity

•
•

that is 𝜅 𝐺 = 𝜆 𝐺 = 𝛿(𝐺)

• Theorem (4.1.11, W) If 𝐺 is a 3-regular graph, then 𝜅 𝐺 = 𝜆(𝐺)
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Properties of edge cut

• When 𝜆 𝐺 < 𝛿(𝐺), a minimum edge cut cannot isolate a vertex
• Similarly for (any) edge cut
• Proposition (4.1.12, W) If 𝑆 is a set of vertices in a graph 𝐺, then

𝑆, 𝑆? =@
-∈@
𝑑(𝑣) − 2𝑒(𝐺[𝑆])

• Corollary (4.1.13, W) If 𝐺 is a simple graph and 𝑆, 𝑆? < 𝛿(𝐺), then 
𝑆 > 𝛿(𝐺)
• 𝑆 must be much larger than a single vertex
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Blocks

• A block of a graph 𝐺 is a maximal connected subgraph of 𝐺 that has 
no cut-vertex. If 𝐺 itself is connected and has no cut-vertex, then 𝐺 is 
a block
• Example
• An edge of a cycle cannot itself be a block
• An edge is block ⟺ it is a bridge
• The blocks of a tree are its edges

• If a block has more than two vertices, then it is 2-connected
• The blocks of a loopless graph are its isolated vertices, bridges, and its 

maximal 2-connected subgraphs
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Intersection of two blocks

• Proposition (4.1.19, W) Two blocks in a graph share at most one 
vertex
• When two blocks share a vertex, it must be a cut-vertex

• Every edge is a subgraph with no cut-vertex and hence is in a block. 
Thus blocks in a graph decompose the edge set
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Block-cutpoint graph

• The block-cutpoint graph of a graph 𝐺 is a bipartite graph 𝐻 in which 
one partite set consists of the cut-vertices of 𝐺, and the other has a 
vertex 𝑏3 for each block 𝐵3 of 𝐺. We include 𝑣𝑏3 as an edge of 𝐻 ⟺
𝑣 ∈ 𝐵3

• (Ex34, S4.1, W) When 𝐺 is connected, its block-cutpoint graph is a 
tree
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Depth-first search (DFS)

• Depth-first search

• Lemma (4.1.22, W) If 𝑇 is a spanning tree of a connected graph grown 
by DFS from 𝑢, then every edge of 𝐺 not in 𝑇 consists of two vertices 
𝑣,𝑤 such that 𝑣 lies on the 𝑢,𝑤-path in 𝑇
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Finding blocks by DFS

• Input: A connected graph 𝐺
• Idea: Build a DFS tree 𝑇 of 𝐺, discarding portions of 𝑇 as blocks are 

identified. Maintain one vertex called ACTIVE
• Initialization: Pick a root 𝑥 ∈ 𝑉(𝐻); make 𝑥 ACTIVE; set 𝑇 = {𝑥}
• Iteration: Let 𝑣 denote the current active vertex
• If 𝑣 has an unexplored incident edge 𝑣𝑤, then 

• If 𝑤 ∉ 𝑉(𝑇), then add 𝑣𝑤 to 𝑇, mark 𝑣𝑤 explored, make 𝑤 ACTIVE
• If 𝑤 ∈ 𝑉(𝑇), then 𝑤 is an ancestor of 𝑣; mark 𝑣𝑤 explored

• If 𝑣 has no more unexplored incident edges, then 
• If 𝑣 ≠ 𝑥 and 𝑤 is a parent of 𝑣, make 𝑤 ACTIVE. If no vertex in the current subtree 𝑇′

rooted at 𝑣 has an explored edge to an ancestor above 𝑤, then 𝑉(𝑇’) ∪ 𝑤 is the vertex 
set of a block; record this information and delete 𝑉(𝑇′)

• if 𝑣 = 𝑥, terminate
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Example
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Strong orientation

• Theorem (2.5, L; 4.2.14, W; Robbins 1939) A graph has a strong 
orientation, i.e. an orientation that is a strongly connected digraph 
⟺ it is 2-edge-connected 
• A directed graph is strongly connected if for every pair of vertices (𝑣, 𝑤), 

there is a directed path from 𝑣 to 𝑤
• Proposition (2.4, L) Let 𝑥𝑦 ∈ 𝑇 which is not a bridge in 𝐺 and 𝑥 is a parent of 
𝑦. Then there exists an edge in 𝐺 but not in 𝑇 joining some descendant 𝑎 of 𝑦
and some ancestor 𝑏 of 𝑥
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2-Connected Graphs
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2-connected graphs

• Two paths from 𝑢 to 𝑣 are internally disjoint if they have no common 
internal vertex
• Theorem (4.2.2, W; Whitney 1932) 

A graph 𝐺 having at least three vertices is 2-connected ⟺ for each 
pair 𝑢, 𝑣 ∈ 𝑉(𝐺) there exist internally disjoint 𝑢, 𝑣-paths in 𝐺
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Equivalent definitions for 2-connected graphs

• Lemma (4.2.3, W; Expansion Lemma) If 𝐺 is a 𝑘-connected graph, and 
𝐺′ is obtained from 𝐺 by adding a new vertex 𝑦 with at least 𝑘
neighbors in 𝐺, then 𝐺′ is 𝑘-connected

• Theorem (4.2.4, W) For a graph G with at least three vertices, TFAE
• 𝐺 is connected and has no cut-vertex
• For all 𝑥, 𝑦 ∈ 𝑉(𝐺), there are internally disjoint 𝑥, 𝑦-paths
• For all 𝑥, 𝑦 ∈ 𝑉(𝐺), there is a cycle through 𝑥 and 𝑦
• 𝛿(𝐺) ≥ 1 and every pair of edges in 𝐺 lies on a common cycle
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Ear decomposition

• An ear of a graph 𝐺 is a maximal path whose internal 
vertices have degree 2 in 𝐺
• An ear decomposition of 𝐺 is a decomposition 𝑃#, … , 𝑃$

such that 𝑃# is a cycle and 𝑃3 for 𝑖 ≥ 1 is an ear of 𝑃# ∪⋯∪ 𝑃3
• Theorem (4.2.8, W) 

A graph is 2-connected ⟺ it has an ear decomposition. 
Furthermore, every cycle in a 2-connected graph is the initial cycle in 
some ear decomposition
• Corollary (4.2.6, W) If 𝐺 is 2-connected, then the graph 𝐺′ obtained by 

subdividing an edge of 𝐺 is 2-connected
•
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Closed-ear

• A closed ear of a graph 𝐺 is a cycle 𝐶 such that all 
vertices of 𝐶 except one have degree 2 in 𝐺
• A closed-ear decomposition of 𝐺 is a decomposition 
𝑃#, … , 𝑃$ such that 𝑃# is a cycle and 𝑃3 for 𝑖 ≥ 1 is an 
(open) ear or a closed ear in 𝑃# ∪⋯∪ 𝑃3
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Closed-ear decomposition

• Theorem (4.2.10, W) 
A graph is 2-edge-connected ⟺ it has a closed-ear decomposition. 
Every cycle in a 2-edge-connected graph is the initial cycle in some 
such decomposition
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Strong orientation (Revisited)

•
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k-Connected and k-Edge-
Connected graphs
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𝑥, 𝑦-cut

• Given 𝑥, 𝑦 ∈ 𝑉(𝐺), a set 𝑆 ⊆ 𝑉 𝐺 − 𝑥, 𝑦 is an 𝑥, 𝑦-separator or 
𝑥, 𝑦-cut if 𝐺 − 𝑆 has no 𝑥, 𝑦-path
• Let 𝜅 𝑥, 𝑦 be the minimum size of an 𝑥, 𝑦-cut 
• Let 𝜆 𝑥, 𝑦 be the maximum size of a set of pairwise internally disjoint 𝑥, 𝑦-

paths
• 𝜅 𝑥, 𝑦 ≥ 𝜆 𝑥, 𝑦

• For 𝑋, 𝑌 ⊆ 𝑉(𝐺), an 𝑋, 𝑌-path is a path having first vertex in 𝑋, last 
vertex in 𝑌, and no other vertex in 𝑋 ∪ 𝑌
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Example (4.2.16, W)

• 𝑆 = 𝑏, 𝑐, 𝑧, 𝑑
• 𝜅 𝑥, 𝑦 = 𝜆 𝑥, 𝑦 = 4
• 𝜅 𝑤, 𝑧 = 𝜆 𝑤, 𝑧 = 3
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Menger’s Theorem

• Theorem (4.2.17, W; 3.3.1, D; Menger, 1927) If 𝑥, 𝑦 are vertices of a 
graph 𝐺 and 𝑥𝑦 ∉ 𝐸(𝐺), then 𝜅 𝑥, 𝑦 = 𝜆 𝑥, 𝑦
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Edge version

• Theorem (4.2.19, W) If 𝑥 and 𝑦 are distinct vertices of a graph 𝐺, then 
the minimum size 𝜅′ 𝑥, 𝑦 of an 𝑥, 𝑦-disconnecting set of edges 
equals the maximum number 𝜆′ 𝑥, 𝑦 of pairwise edge-disjoint 𝑥, 𝑦-
paths
• The line graph 𝐿(𝐺) of a graph 𝐺 is the graph whose vertices are the edges of 
𝐺 with 𝑒𝑓 ∈ 𝐸(𝐿(𝐺)) when 𝑒 = 𝑢𝑣 and 𝑓 = 𝑣𝑤 in 𝐺
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Back to connectivity

• Theorem (4.2.21, W) 
𝜅 𝐺 = min

'K0∈)(+)
𝜆 𝑥, 𝑦 , 𝜆 𝐺 = min

'K0∈)(+)
𝜆′ 𝑥, 𝑦

• Lemma (4.2.20, W) Deletion of an edge reduces connectivity by at most 1
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Application of Menger’s Theorem
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CSDR

• Let 𝑨 = 𝐴!, … , 𝐴L and 𝑩 = 𝐵!, … , 𝐵L be two family of sets. A 
common system of distinct representatives (CSDR) is a set of 𝑚
elements that is both an system of distinct representatives (SDR) for 
𝑨 and an SDR for 𝑩
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Equivalent condition for CSDR

• Theorem (4.2.25, W; Ford-Fulkerson 1958) Families 𝑨 = {𝐴!, … , 𝐴L}
and 𝑩 = {𝐵!, … , 𝐵L} have a common system of distinct 
representatives (CSDR) ⟺

�
3∈M

𝐴3 ∩ �
>∈N

𝐵> ≥ 𝐼 + 𝐽 − 𝑚

for every pair 𝐼, 𝐽 ⊆ [𝑚]
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Lecture 7: Coloring
Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University
https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS445/index.html
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Motivation: Scheduling and coloring

• University examination timetabling
• Two courses linked by an edge if they have the 

same students

• Meeting scheduling
• Two meetings are linked if they have same 

member
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Definitions

• Given a graph 𝐺 and a positive integer 𝑘, a 𝑘-coloring is a function 
𝐾: 𝑉(𝐺) ⟶ 1,… , 𝑘 from the vertex set into the set of positive 
integers less than or equal to 𝑘. If we think of the latter set as a set of 
𝑘 “colors,” then 𝐾 is an assignment of one color to each vertex. 
• We say that 𝐾 is a proper 𝑘-coloring of 𝐺 if for every pair 𝑢, 𝑣 of 

adjacent vertices, 𝐾(𝑢) ≠ 𝐾(𝑣)— that is, if adjacent vertices are 
colored differently. If such a coloring exists for a graph 𝐺, we say that 
𝐺 is 𝑘-colorable
• In a proper coloring, each color class is an independent set. Then 
𝐺 is 𝑘-colorable ⟺𝑉(𝐺) is the union of 𝑘 independent sets
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Chromatic number

• Given a graph 𝐺, the chromatic number of 𝐺, denoted by 𝜒(𝐺), is the 
smallest integer 𝑘 such that 𝐺 is 𝑘-colorable. 𝐺 is said to be 𝑘-chromatic
• Examples

• (Ex5, S1.6.1, H) A graph 𝐺 of order at least two is bipartite ⟺ it is 2-
colorable
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Bounds on Chromatic number

• Theorem (1.41, H) For any graph 𝐺 of order 𝑛, 𝜒(𝐺) ≤ 𝑛
• It is tight since 𝜒 𝐾5 = 𝑛
• 𝜒 𝐺 = 𝑛⟺𝐺 = 𝐾5
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Greedy algorithm

• First label the vertices in some order—call them 𝑣!, 𝑣", … , 𝑣5
• Next, order the available colors (1,2, … , 𝑛) in some way
• Start coloring by assigning color 1 to vertex 𝑣"
• If 𝑣" and 𝑣) are adjacent, assign color 2 to vertex 𝑣); otherwise, use color 1
• To color vertex 𝑣0, use the first available color that has not been used for any 

of 𝑣0’s previously colored neighbors
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Examples: Different orders result in different 
number of colors
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Bound using the greedy algorithm

• Theorem (1.42, H) For any graph G, 𝜒 𝐺 ≤ ∆ 𝐺 + 1
The equality is obtained for complete graphs and odd cycles
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Brooks’s theorem

• Theorem (1.43, H; 5.1.22, W; 5.2.4, D; Brooks 1941) 
If G is a connected graph that is neither an odd cycle or a complete 
graph, then 𝜒 𝐺 ≤ ∆ 𝐺

• ⇒The Petersen graph is 3-colorable
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Chromatic number and clique number

• The clique number 𝜔(𝐺) of a graph is defined as the order of the 
largest complete graph that is a subgraph of 𝐺
• Example: 𝜔 𝐺! = 3,𝜔 𝐺" = 4

• Theorem (1.44, H; 5.1.7, W) For any graph 𝐺, 𝜒 𝐺 ≥ 𝜔(𝐺)
• Example (5.1.8, W) For 𝐺 = 𝐶"2O! ∨ 𝐾P, 𝜒 𝐺 > 𝜔(𝐺)
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Chromatic number and independence 
number
• Theorem (1.45, H; 5.1.7, W; Ex6, S1.6.2, H) For any graph 𝐺 of order 
𝑛, 

𝑛
𝛼(𝐺)

≤ 𝜒 𝐺 ≤ 𝑛 + 1 − 𝛼(𝐺)
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Extremal properties for 𝑘-chromatic graphs

• Proposition (5.2.5, W) Every 𝑘-chromatic graph with 𝑛 vertices has at least
𝑘
2 edges
• Equality holds for a complete graph plus isolated vertices.

• The Turán graph 𝑇0,! is the complete 𝑟-partite graph with 𝑛 vertices whose 
partite sets differ by at most 1 vertex
• Every partite set has size 𝑛/𝑟 or 𝑛/𝑟

• Lemma (5.2.8, W) Among simple 𝑟-partite (that is, 𝑟-colorable) graphs with 
𝑛 vertices, the Turán graph is the unique graph with the most edges
• Turán’s Theorem (5.2.9, W; Turán 1941) Among the 𝑛-vertex simple 𝐾!#$-

free graphs, 𝑇0,! has the maximum number of edges 139



Color-critical

• If 𝜒 𝐻 < 𝜒 𝐺 = 𝑘 for every proper subgraph 𝐻, then 𝐺 is color-
critical or 𝑘-critical
• 𝐾" is the only 2-critical graph
𝐾! is the only 1-critical graph
• (5.2.12, W) A graph with no isolated vertices is color-critical ⇔
𝜒 𝐺 − 𝑒 < 𝜒 𝐺 for every edge 𝑒 ∈ 𝐸(𝐺)
• Proposition (5.2.13, W) Let 𝐺 be a 𝑘-critical graph

(a) For every 𝑣 ∈ 𝑉(𝐺), there is a proper coloring such that 𝑣 has a 
unique color and other 𝑘 − 1 colors all appear on 𝑁 𝑣
⇒ 𝛿 𝐺 ≥ 𝑘 − 1
(b) For every 𝑒 ∈ 𝐸(𝐺), every proper (𝑘 − 1)-coloring of 𝐺 − 𝑒 gives 
the same color to the two endpoints of 𝑒
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Color-critical has edge-connectivity

• Theorem (5.2.16, W; Dirac 1953) Every 𝑘-critical graph is (𝑘 − 1)-
edge-connected
• Lemma (5.2.15, W; Kainen) Let 𝐺 be a graph with 𝜒 𝐺 > 𝑘 and let 
𝑋, 𝑌 be a partition of 𝑉(𝐺). If 𝐺[𝑋] and 𝐺[𝑌] are 𝑘-colorable, then 
the edge cut [𝑋, 𝑌] has at least 𝑘 edges
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Color-critical and vertex cut set

• Let 𝑆 be a set of vertices in a graph 𝐺. An 𝑆-lobe of 𝐺 is an induced 
subgraph of 𝐺 whose vertex set consists of 𝑆 and the vertices of a 
component in 𝐺 − 𝑆

• Proposition (5.2.18, W) If 𝐺 is 𝑘-critical, then 𝐺 has no clique cutset. 
In particular, if 𝐺 has a cutset 𝑆 = {𝑥, 𝑦}, then 𝑥, 𝑦 are non-adjacent 
and 𝐺 has an 𝑆-lobe 𝐻 such that 𝜒 𝐻 + 𝑥𝑦 = 𝑘
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Chromatic number 4 has a 𝐾!-subdivision

• Theorem (5.2.20, W; Dirac 1952) Every graph with chromatic number 
at least 4 contains a 𝐾Q-subdivision
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Hajós' conjecture

• Hajós' conjecture [1961]: Every 𝑘-chromatic graph contains a 
subdivision of 𝐾$
• 𝑘 = 2: Every 2-chromatic graph has a nontrivial path
• 𝑘 = 3: Every 3-chromatic graph has a cycle
• It is open for 𝑘 = 5,6
• Exercise (Ex5.2.40, W) It is false for 𝑘 = 7 or 8
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Chromatic Polynomials
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Definition and examples

• It is brought up by George David Birkhoff in 1912 in an attempt to prove 
the four color theorem
• Define 𝜒 𝐺; 𝑘 to be the number of different colorings of a graph 𝐺 using 

at most 𝑘 colors
• Examples:

• How many different colorings of 𝐾/ using 4 colors?
• 4×3×2×1
• 𝜒 𝐾!; 4 = 24

• How many different colorings of 𝐾/ using 6 colors?
• 6×5×4×3
• 𝜒 𝐾!; 6 = 360

• How many different colorings of 𝐾/ using 2 colors?
• 0
• 𝜒 𝐾!; 2 = 0
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Examples

• If 𝑘 ≥ 𝑛
𝜒 𝐾5; 𝑘 = 𝑘(𝑘 − 1)⋯ (𝑘 − 𝑛 + 1)

• If 𝑘 < 𝑛
𝜒 𝐾5; 𝑘 = 0

• 𝐺 is 𝑘-colorable ⟺ 𝜒 𝐺 ≤ 𝑘 ⟺ 𝜒 𝐺; 𝑘 > 0
• 𝜒 𝐺 = min 𝑘 ≥ 1: 𝜒 𝐺; 𝑘 > 0

147



Chromatic recurrence

• 𝐺 − 𝑒 and 𝐺/𝑒

• Theorem (1.48, H; 5.3.6, W) Let 𝐺 be a graph and 𝑒 be any edge of 𝐺. 
Then

𝜒 𝐺; 𝑘 = 𝜒 𝐺 − 𝑒; 𝑘 − 𝜒 𝐺/𝑒; 𝑘
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Use chromatic recurrence to compute 𝜒 𝐺; 𝑘

• Example: Compute 𝜒 𝑃:; 𝑘 = 𝑘Q − 3𝑘: + 3𝑘" − 𝑘
• Check: 𝜒 𝑃:; 1 = 0, 𝜒 𝑃:; 2 = 2

• Example: What is 𝜒 𝐾5 − 𝑒; 𝑘 ?
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More examples

• Path 𝑃5%! has 𝑛 − 1 edges (𝑛 vertices)
𝜒 𝑃5%!; 𝑘 = 𝑘(𝑘 − 1)5%!

• Any tree 𝑇 on 𝑛 vertices
𝜒 𝑇; 𝑘 = 𝑘(𝑘 − 1)5%!

• Cycle 𝐶5
𝜒 𝐶5; 𝑘 = (𝑘 − 1)5+ −1 5(𝑘 − 1)

• When 𝑛 is odd, 𝜒 𝐶P; 2 = 0, 𝜒 𝐶P; 3 > 0
• When 𝑛 is even, 𝜒 𝐶P; 2 > 0
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Properties of chromatic polynomials

• Theorem (1.49, H; Ex 3, S1.6.4, H) Let 𝐺 be a graph of order 𝑛
• 𝜒 𝐺; 𝑘 is a polynomial in 𝑘 of degree 𝑛
• The leading coefficient of 𝜒 𝐺; 𝑘 is 1
• The constant term of 𝜒 𝐺; 𝑘 is 0

• If 𝐺 has 𝑖 components, then the coefficients of 𝑘!, … , 𝑘"#$ are 0
• 𝐺 is connected ⟺ the coefficient of 𝑘 is nonzero

• The coefficients of 𝜒 𝐺; 𝑘 alternate in sign
• The coefficient of the 𝑘PQ" term is − 𝐸(𝐺)

• A graph 𝐺 is a tree ⟺ 𝜒 𝐺; 𝑘 = 𝑘(𝑘 − 1)%#$

• A graph 𝐺 is complete ⟺ 𝜒 𝐺; 𝑘 = 𝑘(𝑘 − 1)⋯ (𝑘 − 𝑛 + 1)
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Simplicial elimination ordering

• Roots for the chromatic polynomials? 
Fundamental theorem of algebra
• A vertex of 𝐺 is simplicial if its neighborhood in 𝐺 induces a clique
• A simplicial elimination ordering is an ordering 𝑣0, … , 𝑣$ for deletion of 

vertices s.t. each vertex 𝑣> is a simplicial vertex of the graph reduced by 
𝑣$, … , 𝑣>

• Chromatic polynomials
If we have colored 𝑣$, … , 𝑣>?$, then there are 𝑘 − 𝑑(𝑖) ways to color 𝑣>
where 𝑑 𝑖 = 𝑁(𝑣>) ∩ 𝑣$, … , 𝑣>?$ . Thus 

𝜒 𝐺; 𝑘 =B
>@$

0
(𝑘 − 𝑑(𝑖))

Nice factorization property!
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Examples

• In a tree, a simplicial elimination ordering is a successive deletion of leaves
• Another proof for 𝜒 𝑇; 𝑘 = 𝑘(𝑘 − 1)!0&

• Example (5.3.13, W) 𝑣A, … , 𝑣$ is a simplicial elimination ordering.
The values 𝑑(𝑖) are 0,1,1,2,3,2. Thus the chromatic 
polynomial is 𝑘(𝑘 − 1)(𝑘 − 1)(𝑘 − 2)(𝑘 − 3)(𝑘 − 2)

• Exercise (Ex 5.3.19, W) There exists some graph without simplicial 
elimination ordering but has a nice factorization form for chromatic 
polynomial
• The existence of simplicial elimination ordering  is a sufficient condition for the 

chromatic polynomial having all real roots, but not necessary 153



Chordal graphs

• A chord of a cycle 𝐶 is an edge not in 𝐶 whose endpoints lie in 𝐶
• A chordless cycle in 𝐺 is a cycle of length at least 4 that has no chord
• Theorem (5.3.17, W; Dirac 1961) A simple graph has a 

simplicial elimination ordering ⇔ it is a chordal graph (a 
simple graph without chordless cycle)
• TONCAS!
• Further 

does not have a degree-1 decomposition
• Lemma (5.3.16, W) For every vertex 𝑥 in a chordal graph, there is a 

simplicial vertex of 𝐺 among the vertices farthest from 𝑥
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Lecture 8: Planarity
Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University
https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS445/index.html
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Motivation
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Definition and examples

• A graph 𝐺 is said to be planar if it can be drawn in the plane in such a 
way that pairs of edges intersect only at vertices
• If G has no such representation, 𝐺 is called nonplanar
• A drawing of a planar graph 𝐺 in the plane in which edges intersect 

only at vertices is called a planar representation (or a planar 
embedding) of 𝐺
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Face

• Given a planar representation of a graph 𝐺, a face is a maximal region 
(polygonal open set) of the plane in which any two points can be 
joined by a curve that does not intersect any part of 𝐺
• The face 𝑅_ is called the outer (or exterior) face
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Face - properties

• An edge can come into contact with 
either one or two faces
• Example:
• Edge 𝑒" is only in contact with one face 𝑆"
• Edge 𝑒), 𝑒R are only in contact with 𝑆)
• Each of other edges is in contact with two faces

• An edge 𝑒 bounds a face 𝐹 if 𝑒 comes into contact with 𝐹 and with a 
face different from 𝐹
• The bounded degree 𝑏(𝐹) is the number of edges that bound the 

face
• Example: 𝑏 𝑆" = 𝑏 𝑆R = 3, 𝑏 𝑆) = 6
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Face - properties 2

• The length of a face in a plane graph 𝐺 is the total length of the closed 
walk(s) in 𝐺 bounding the face
• Proposition (6.1.13, W) If 𝑙(𝐹) denotes the length of face 𝐹 in a plane 

graph 𝐺, then 2 𝐸(𝐺) = ∑ 𝑙(𝐹3)
• Theorem (Restricted Jordan Curve Theorem) A simple closed 

polygonal curve 𝐶 consisting of finitely many segments partitions the 
plane into exactly two faces, each having 𝐶 as boundary
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Bond

• An edge cut may contain another edge cut
• Example: 𝐾!," or star graphs
• A bond is a minimal nonempty edge cut
• Proposition (4.1.15, W) If 𝐺 is a connected graph, then an edge cut 𝐹

is a bond ⟺𝐺 − 𝐹 has exactly two components
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Dual graph

• The dual graph 𝐺∗ of a plane graph 𝐺 is a plane graph whose vertices 
are faces of 𝐺 and edges are those contacting two faces
• Theorem (6.1.14, W) Edges in a plane graph 𝐺 form a cycle in 𝐺 ⇔

the corresponding dual edges form a bond in 𝐺∗
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Dual graph of bipartite graph

• Theorem (6.1.16, W) TFAE for a plane graph 𝐺
• (a) 𝐺 is bipartite
• (b) Every face of 𝐺 has even length
• (c) The dual graph 𝐺∗ is Eulerian
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The relationship between numbers of 
vertices, edges and faces
• The number of vertices 𝑛
• The number of edges 𝑚
• The number of faces 𝑓
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Euler’s formula

• Theorem (1.31, H; 6.1.21, W; Euler 1758) If 𝐺 is a connected planar 
graph with 𝑛 vertices, 𝑚 edges, and 𝑓 faces, then

𝑛 −𝑚 + 𝑓 = 2
• Need Lemma: (Ex4, S1.5.1, H) Every tree is planar

• (Ex6, S1.5.2, H) Let 𝐺 be a planar graph with 𝑘 components. Then
𝑛 −𝑚 + 𝑓 = 𝑘 + 1
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𝐾"," is nonplanar

• Theorem (1.32, H) 𝐾:,: is nonplanar
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Upper bound for 𝑚

• Theorem (1.33, H; 6.1.23, W) If 𝐺 is a planar graph with 𝑛 ≥ 3
vertices and 𝑚 edges, then 𝑚 ≤ 3𝑛 − 6. Furthermore, if equality 
holds, then every face is bounded by 3 edges. In this case, 𝐺 is 
maximal
• (Ex4, S1.5.2, H) Let 𝐺 be a connected, planar, 𝐾:-free graph of order 
𝑛 ≥ 3. Then 𝐺 has no more than 2𝑛 − 4 edges
• Corollary (1.34, H) 𝐾< is nonplanar
• Theorem (1.35, H) If 𝐺 is a planar graph , then 𝛿(𝐺) ≤ 5
• (Ex5, S1.5.2, H) If 𝐺 is bipartite planar graph, then 𝛿 𝐺 < 4
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Polyhedra
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(Convex) Polyhedra多面体

• A polyhedron is a solid that is bounded by flat surfaces
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Polyhedra are planar
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Properties

• Theorem (1.36, H) If a polyhedron has 𝑛 vertices, 𝑚 edges, and 𝑓
faces, then

𝑛 −𝑚 + 𝑓 = 2
• Given a polyhedron 𝑃, define 

𝜌 𝑃 = min 𝑙 𝐹 : 𝐹 is a face of 𝑃

• Theorem (1.37, H) For all polyhedron 𝑃, 3 ≤ 𝜌 𝑃 ≤ 5
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Regular polyhedron 正多面体

• A regular polygon is one that is equilateral and 
equiangular 
正多边形(cycle)，等边、等角
• A polyhedron is regular if its faces are mutually 

congruent, regular polygons and if the number 
of faces meeting at a vertex is the same for 
every vertex
正多面体
面是相互全等的、正多边形、点的度数相等
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Regular polyhedron 正多面体

• Theorem (1.38, H; 6.1.28, W) There are exactly 
five regular polyhedral
•正四面体
•立方体（正六面体）
•正八面体
•正十二面体
•正二十面体
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Kuratowski’s Theorem
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Kuratowski’s Theorem

• Theorem (1.39, H; Ex1, S1.5.4, H) A graph 𝐺 is planar ⟺ every 
subdivision of 𝐺 is planar

• Theorem (1.40, H; Kuratowski 1930) A graph is planar ⟺ it contains 
no subdivision of 𝐾:,: or 𝐾<
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The Four Color Problem
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The Four Color Problem

• Q: Is it true that the countries on any given map can be colored with 
four or fewer colors in such a way that adjacent countries are colored 
differently? 
• Theorem (Four Color Theorem) Every planar graph is 4-colorable
• Theorem (Five Color Theorem) (1.47, H; 6.3.1, W) Every planar graph 

is 5-colorable

• Exercise (Ex5, S1.6.3, H) Where does the proof go wrong for four 
colors?
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Lecture 9: Ramsey Theory
Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University
https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS445/index.html
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The friendship riddle

• Does every set of six people contain three mutual acquaintances or 
three mutual strangers? 

179https://plus.maths.org/content/friends-and-strangers
Wikipedia

R(3,3)=6
R(3,4)=R(4,3)=9
R(3,5)=R(5,3)=14
R(3,6)=R(6,3)=18



(classical) Ramsey number

• A 2-coloring of the edges of a graph 𝐺 is any assignment of one of 
two colors of each of the edges of 𝐺
• Let 𝑝 and 𝑞 be positive integers. The (classical) Ramsey number 

associated with these integers, denoted by 𝑅(𝑝, 𝑞), is defined to be 
the smallest integer 𝑛 such that every 2-coloring of the edges of 𝐾5
either contains a red 𝐾a or a blue 𝐾b as a subgraph
• It is a typical problem of extremal graph theory
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Examples

• 𝑅 1,3 = 1
• (Ex2, S1.8.1, H) 𝑅 1, 𝑘 = 1
• 𝑅 2,4 = 4
• (Ex3, S1.8.1, H) 𝑅 2, 𝑘 = 𝑘
• Theorem (1.61, H; 8.3.1, 8.3.9, W) 𝑅 3,3 = 6
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Examples (cont.)

• Theorem (1.62, H; 8.3.10, W) 𝑅 3,4 = 9

• (Ex4, S1.8.1, H) 𝑅 𝑝, 𝑞 = 𝑅(𝑞, 𝑝)
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Bounds on Ramsey numbers

• Theorem (1.64, H; 2.28, H; 8.3.11, W) If 𝑞 ≥ 2, 𝑞 ≥ 2, then
𝑅 𝑝, 𝑞 ≤ 𝑅 𝑝 − 1, 𝑞 + 𝑅 𝑝, 𝑞 − 1

Furthermore, if both terms on the RHS are even, then the inequality 
is strict

• Theorem (1.63, H; 2.29, H) 𝑅 𝑝, 𝑞 ≤ 𝑝 + 𝑞 − 2
𝑝 − 1

• Theorem (1.65, H) For integer 𝑞 ≥ 3, 𝑅 3, 𝑞 ≤ b!O:
"

• Theorem (1.66, H; 8.3.12, W; Erdős and Szekeres 1935) 
If 𝑝 ≥ 3, 𝑅 𝑝, 𝑝 > 2a/"
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Graph Ramsey Theory

• Given two graphs 𝐺 and 𝐻, define the graph Ramsey number 𝑅(𝐺,𝐻)
to be the smallest value of 𝑛 such that any 2-coloring of the edges of 
𝐾5 contains either a red copy of 𝐺 or a blue copy of 𝐻
• The classical Ramsey number 𝑅(𝑝, 𝑞) would in this context be written as 
𝑅(𝐾U, 𝐾V)

• Theorem (1.67, H) If 𝐺 is a graph of order 𝑝 and 𝐻 is a graph of order 
𝑞, then 𝑅(𝐺,𝐻) ≤ 𝑅(𝑝, 𝑞)
• Theorem (1.68, H) Suppose the order of the largest 

component of 𝐻 is denoted as 𝐶(𝐻). 
Then 𝑅(𝐺,𝐻) ≥ (𝜒(𝐺) − 1)(𝐶(𝐻) − 1) + 1
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Graph Ramsey Theory (cont.)

• Theorem (1.69, H; 8.3.14, W) 𝑅 𝑇L , 𝐾5 = 𝑚 − 1 𝑛 − 1 + 1
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More on pigeonhole principle

• Proposition (8.3.1, W) Among 6 people, it is possible to find 3 mutual 
acquaintances or 3 mutual non-acquaintances
• ⇔ For every simple graph with 6 vertices, there is a triangle in 𝐺 or in 𝐺̅

• Theorem (8.3.2, W) If 𝑇 is a spanning tree of the 𝑘-dimensional cube 
𝑄$, then there is an edge of 𝑄$ outside 𝑇 whose addition to 𝑇 creates 
a cycle of length at least 2𝑘

• ⇒ Every spanning tree of 𝑄# has diameter at least 2𝑘 − 1
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More on pigeonhole principle 2

• Theorem (8.3.3, W; Erdős–Szekeres 1935) Every list of ≥ 𝑛" + 1
distinct numbers has a monotone sublist of length ≥ 𝑛 + 1
• Generalization. 𝑟 − 1 𝑠 − 1 + 1

• Theorem (8.3.4, W; Graham-Kleitman 1973) In every labeling of 
𝐸(𝐾5) using distinct integers, there is a walk of length at least 𝑛 − 1
along which the labels strictly increase

187


