

SHANGHAI JIAO TONG UNIVERSITY



John Hopcroft Center for Computer Science

CS 445: Combinatorics

Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

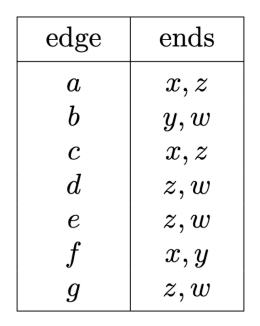
https://shuaili8.github.io

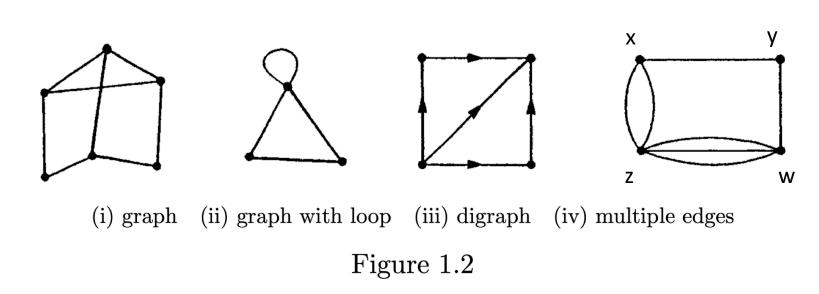
https://shuaili8.github.io/Teaching/CS445/index.html

Basics

Graphs

- Definition A graph G is a pair (V, E)
 - *V*: set of vertices
 - *E*: set of edges
 - $e \in E$ corresponds to a pair of endpoints $x, y \in V$

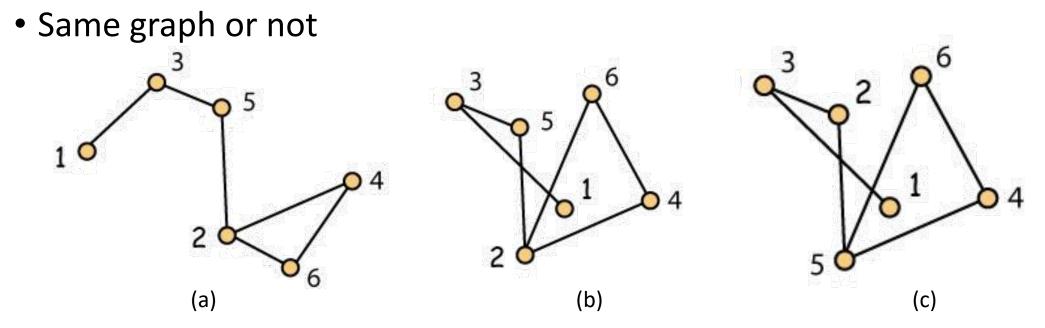




We mainly focus on Simple graph: No loops, no multi-edges

Figure 1.1

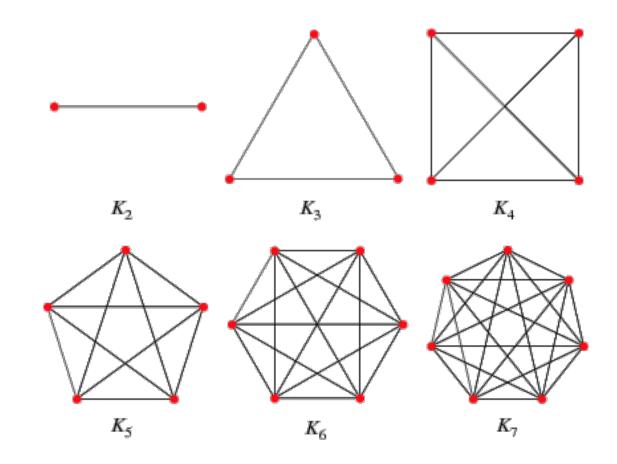
Graphs: All about adjacency



• Two graphs $G_1 = (V_1, E_1), G_1 = (V_2, E_2)$ are isomorphic if there is a bijection $f: V_1 \rightarrow V_2$ s.t. $e = \{a, b\} \in E_1 \iff f(e) := \{f(a), f(b)\} \in E_2$

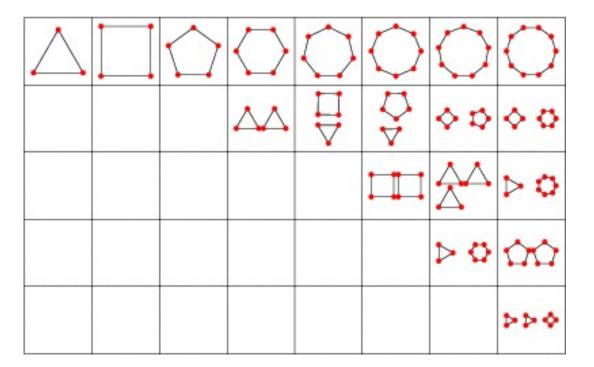
Example: Complete graphs

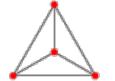
• There is an edge between every pair of vertices

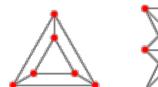


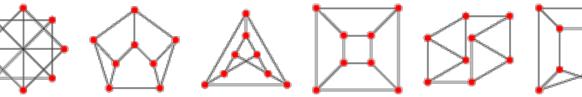
Example: Regular graphs

• Every vertex has the same degree



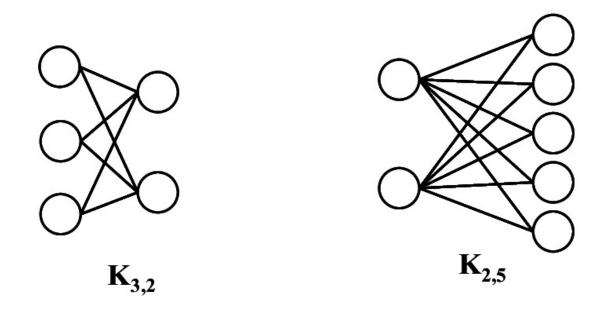






Example: Bipartite graphs

- The vertex set can be partitioned into two sets X and Y such that every edge in G has one end vertex in X and the other in Y
- Complete bipartite graphs



Example (1A, L): Peterson graph

• Show that the following two graphs are same/isomorphic

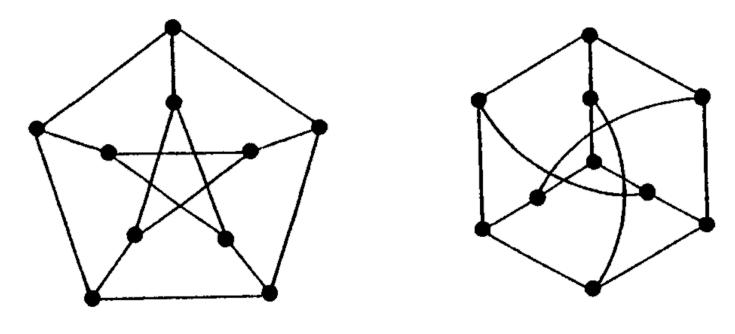
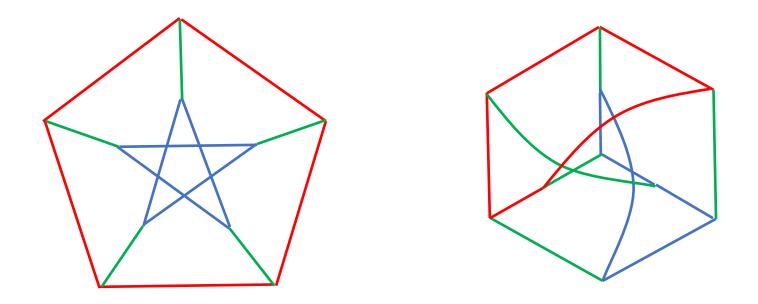


Figure 1.4

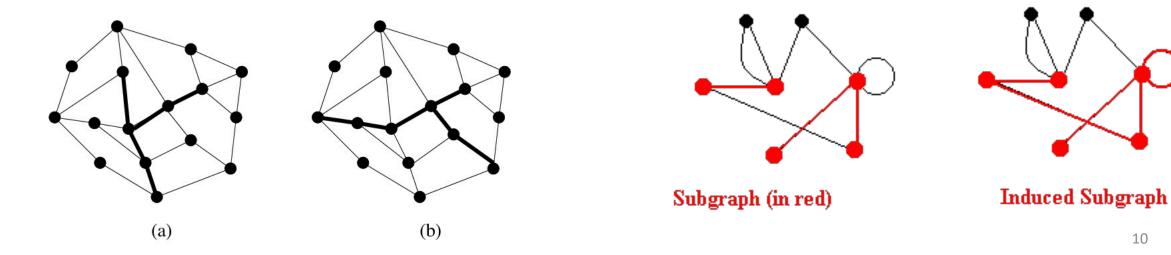
Example: Peterson graph (cont.)

• Show that the following two graphs are same/isomorphic



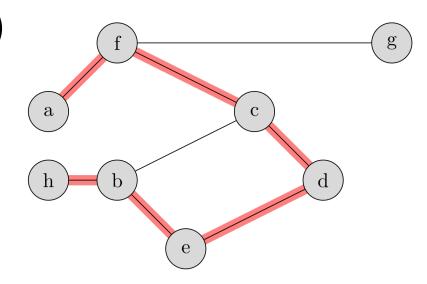
Subgraphs

- A subgraph of a graph G is a graph H such that $V(H) \subseteq V(G), E(H) \subseteq E(G)$ and the ends of an edge $e \in E(H)$ are the same as its ends in G
 - H is a spanning subgraph when V(H) = V(G)
 - The subgraph of G induced by a subset $S \subseteq V(G)$ is the subgraph whose vertex set is S and whose edges are all the edges of G with both ends in S



Paths (路径)

- A path is a non-empty alternating sequence $v_0 e_1 v_1 e_2 \dots e_k v_k$ where vertices are all distinct
 - Or it can be written as $v_0v_1 \dots v_k$ in simple graphs
- P^k : path of length k (the number of edges)

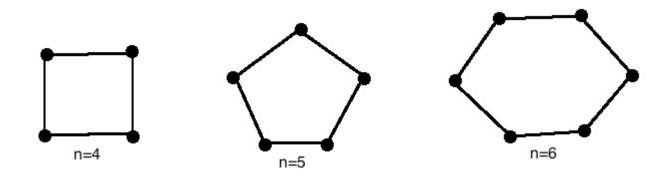


Walk (游走)

- A walk is a non-empty alternating sequence $v_0 e_1 v_1 e_2 \dots e_k v_k$
 - The vertices not necessarily distinct
 - The length = the number of edges
- Proposition (1.2.5, W) Every u-v walk contains a u-v path

Cycles (环)

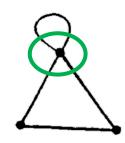
- If $P = x_0 x_1 \dots x_{k-1}$ is a path and $k \ge 3$, then the graph $C \coloneqq P + x_{k-1} x_0$ is called a cycle
- C^k : cycle of length k (the number of edges/vertices)



• Proposition (1.2.15, W) Every closed odd walk contains an odd cycle

Neighbors and degree

- Two vertices $a \neq b$ are called adjacent if they are joined by an edge
 - N(x): set of all vertices adjacent to x
 - neighbors of *x*
 - A vertex is isolated vertex if it has no neighbors
- The number of edges incident with a vertex x is called the degree of x
 - A loop contributes 2 to the degree

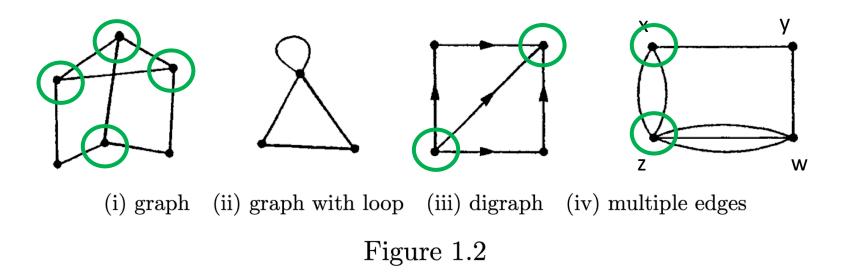


• A graph is finite when both E(G) and V(G) are finite sets

graph with loop

Handshaking Theorem (Euler 1736)

• Theorem A finite graph G has an even number of vertices with odd degree



Proof

- Theorem A finite graph G has an even number of vertices with odd degree.
- Proof The degree of x is the number of times it appears in the right column. Thus

$$\sum_{x \in V(G)} \deg(x) = 2|E(G)|$$

edge	ends
a	x, z
b	y,w
c	x, z
d	z, w
e	z, w
f	x,y
g	z, w

Figure 1.1

Degree

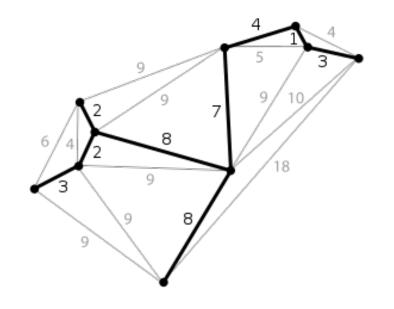
- Minimal degree of $G: \delta(G) = \min\{d(v): v \in V\}$
- Maximal degree of $G: \Delta(G) = \max\{d(v): v \in V\}$

• Average degree of
$$G: d(G) = \frac{1}{|V|} \sum_{v \in V} d(v) = \frac{2|E|}{|V|}$$

- All measure the `density' of a graph
- $d(G) \ge \delta(G)$

Minimal degree guarantees long paths and cycles

• Proposition (1.3.1, D) Every graph G contains a path of length $\delta(G)$ and a cycle of length at least $\delta(G) + 1$, provided $\delta(G) \ge 2$.



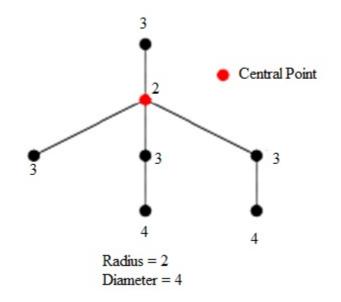
Distance and diameter

- The distance d_G(x, y) in G of two vertices x, y is the length of a shortest x~y path
 - if no such path exists, we set $d(x, y) \coloneqq \infty$
- The greatest distance between any two vertices in *G* is the diameter of *G*

$$\operatorname{diam}(G) = \max_{x,y \in V} d(x,y)$$

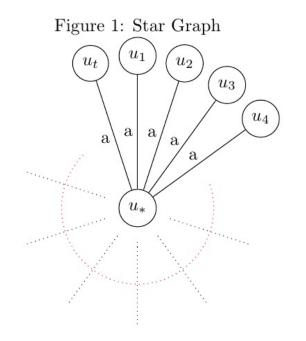
Radius and diameter

- A vertex is central in G if its greatest distance from other vertex is smallest, such greatest distance is the radius of G rad(G) := $\min_{x \in V} \max_{y \in V} d(x, y)$
- Proposition (1.4, H; Ex1.6, D) $rad(G) \le diam(G) \le 2 rad(G)$



Radius and maximum degree control graph size

• Proposition (1.3.3, D) A graph G with radius at most r and maximum degree at most $\Delta \ge 3$ has fewer than $\frac{\Delta}{\Delta - 2} (\Delta - 1)^r$.



Lecture 2: Girth, Connectivity and Bipartite Graphs

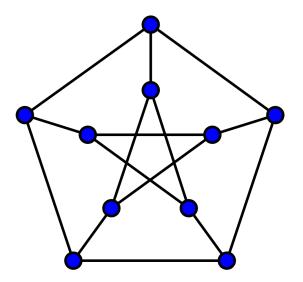
Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS445/index.html

- The minimum length of a cycle in a graph G is the girth g(G) of G
- Example: The Peterson graph is the unique 5-cage
 - cubic graph (every vertex has degree 3)
 - girth = 5
 - smallest graph satisfies the above properties



Girth (cont.)

- A tree has girth ∞
- Note that a tree can be colored with two different colors
- → A graph with large girth has small chromatic number?
- Unfortunately NO!
- Theorem (Erdős, 1959) For all k, l, there exists a graph G with g(G) > l and $\chi(G) > k$

Girth and diameter

- Proposition (1.3.2, D) Every graph G containing a cycle satisfies $g(G) \le 2 \operatorname{diam}(G) + 1$
- When the equality holds?

Girth and minimal degree lower bounds graph size

•
$$n_0(\delta, g) \coloneqq \begin{cases} 1 + \delta \sum_{i=0}^{r-1} (\delta - 1)^i, & \text{if } g = 2r + 1 \text{ is odd} \\ 2 \sum_{i=0}^{r-1} (\delta - 1)^i, & \text{if } g = 2r \text{ is even} \end{cases}$$

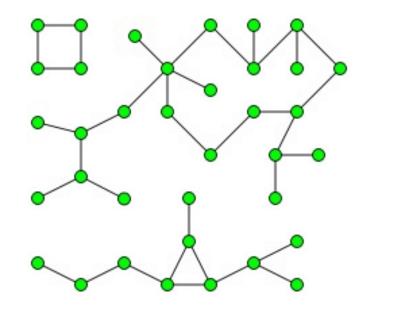
- Exercise (Ex7, ch1, D) Let G be a graph. If $\delta(G) \ge \delta \ge 2$ and $g(G) \ge g$, then $|G| \ge n_0(\delta, g)$
- Corollary (1.3.5, D) If $\delta(G) \ge 3$, then $g(G) < 2 \log_2 |G|$

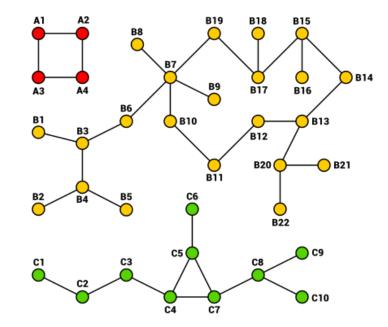
Triangle-free upper bounds # of edges

- Theorem (1.3.23, W, Mantel 1907) The maximum number of edges in an *n*-vertex triangle-free simple graph is $\lfloor n^2/4 \rfloor$
- The bound is best possible
- There is a triangle-free graph with $\lfloor n^2/4 \rfloor$ edges: $K_{\lfloor n/2 \rfloor, \lfloor n/2 \rfloor}$
- Extremal problems

Connected, connected component

- A graph G is connected if G ≠ Ø and any two of its vertices are linked by a path
- A maximal connected subgraph of G is a (connected) component





Quiz

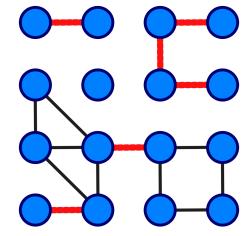
- Problem (1B, L) Suppose G is a graph on 10 vertices that is not connected. Prove that G has at most 36 edges. Can equality occur?
- More general (Ex9, S1.1.2, H) Let G be a graph of order n that is not connected. What is the maximum size of G?

Connected vs. minimal degree

- Proposition (1.3.15, W) If $\delta(G) \ge \frac{n-1}{2}$, then G is connected
- (Ex16, S1.1.2, H; 1.3.16, W) If $\delta(G) \ge \frac{n-2}{2}$, then G need not be connected
- Extremal problems
- "best possible" "sharp"

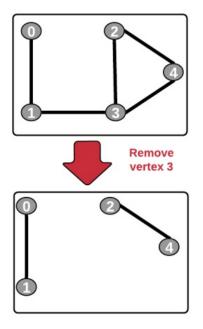
Add/delete an edge

- Components are pairwise disjoint; no two share a vertex
- Adding an edge decreases the number of components by 0 or 1
 - \Rightarrow deleting an edge increases the number of components by 0 or 1
- Proposition (1.2.11, W)
 Every graph with n vertices and k edges has at least n k components
- An edge e is called a bridge if the graph G e has more components
- Proposition (1.2.14, W)
 An edge *e* is a bridge ⇔ *e* lies on no cycle of *G*
 - Or equivalently, an edge e is not a bridge $\Leftrightarrow e$ lies on a cycle of G



Cut vertex and connectivity

- A node v is a cut vertex if the graph G v has more components
- A proper subset S of vertices is a vertex cut set if the graph G S is disconnected, or trivial (a graph of order 0 or 1)
- The connectivity, κ(G), is the minimum size of a cut set of G
 - The graph is k-connected for any $k \leq \kappa(G)$



Connectivity properties

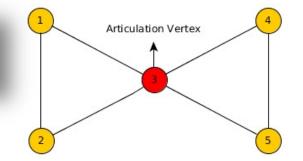
- $\kappa(K^n) = n 1$
- If G is disconnected, $\kappa(G) = 0$
 - \Rightarrow A graph is connected $\Leftrightarrow \kappa(G) \ge 1$
- If G is connected, non-complete graph of order n, then $1 \le \kappa(G) \le n-2$

Connectivity properties (cont.)

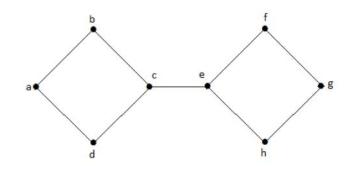
Proposition (1.2.14, W)

An edge e is a bridge $\Leftrightarrow e$ lies on no cycle of G

- Or equivalently, an edge e is not a bridge $\Leftrightarrow e$ lies on a cycle of G
- $\kappa(G) \ge 2 \Leftrightarrow G$ is connected and has no cut vertices

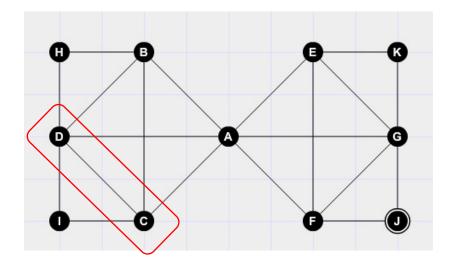


- A vertex lies on a cycle ⇒ it is not a cut vertex
 - \Rightarrow (Ex13, S1.1.2, H) Every vertex of a connected graph G lies on at least one cycle $\Rightarrow \kappa(G) \ge 2$
 - (Ex14, S1.1.2, H) $\kappa(G) \ge 2$ implies G has at least one cycle
- (Ex12, S1.1.2, H) G has a cut vertex vs. G has a bridge



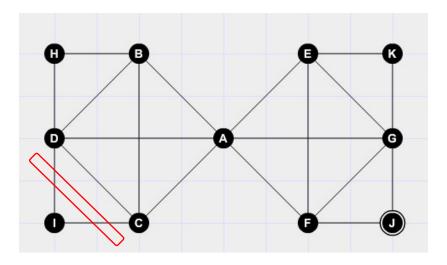
Connectivity and minimal degree

- (Ex15, S1.1.2, H)
- $\kappa(G) \leq \delta(G)$
- If $\delta(G) \ge n 2$, then $\kappa(G) = \delta(G)$



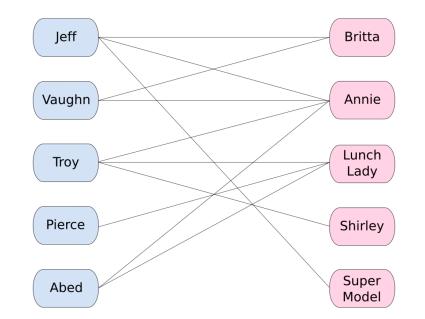
Edge-connectivity

- A proper subset F ⊂ E is edge cut set if the graph G − F is disconnected
- The edge-connectivity $\lambda(G)$ is the minimal size of edge cut set
- $\lambda(G) = 0$ if G is disconnected
- Proposition (1.4.2, D) If G is non-trivial, then $\kappa(G) \leq \lambda(G) \leq \delta(G)$



Bipartite graphs

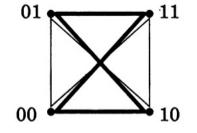
Theorem (1.2.18, W, Kőnig 1936)
 A graph is bipartite ⇔ it contains no odd cycle



Proposition (1.2.15, W) Every closed odd walk contains an odd cycle

Complete graph is a union of bipartite graphs

- The union of graphs G_1, \ldots, G_k , written $G_1 \cup \cdots \cup G_k$, is the graph with vertex set $\bigcup_{i=1}^k V(G_i)$ and edge set $\bigcup_{i=1}^k E(G_i)$
- Consider an air traffic system with k airlines
 - Each pair of cities has direct service from at least one airline
 - No airline can schedule a cycle through an odd number of cities
 - Then, what is the maximum number of cities in the system?



• Theorem (1.2.23, W) The complete graph K_n can be expressed as the union of k bipartite graphs $\Leftrightarrow n \leq 2^k$

Bipartite subgraph is large

• Theorem (1.3.19, W) Every loopless graph G has a bipartite subgraph with at least |E|/2 edges

Lecture 3: Trees

Shuai Li

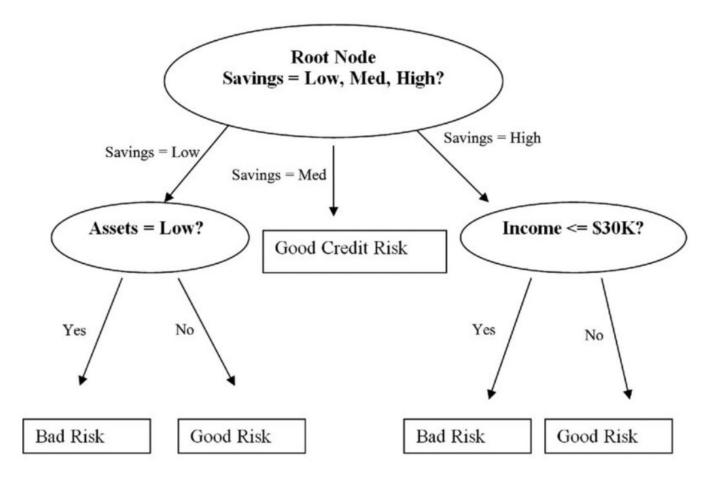
John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS445/index.html

Trees

• A tree is a connected graph T with no cycles



Properties

Theorem (1.2.18, W, Kőnig 1936)

- Recall that A graph is bipartite \Leftrightarrow it contains no odd cycle
- \Rightarrow (Ex 3, S1.3.1, H) A tree of order $n \ge 2$ is a bipartite graph

Proposition (1.2.14, W)

An edge e is a bridge $\Leftrightarrow e$ lies on no cycle of G

- Recall that • Or equivalently, an edge e is not a bridge $\Leftrightarrow e$ lies on a cycle of G
- \Rightarrow Every edge in a tree is a bridge
- T is a tree \Leftrightarrow T is minimally connected, i.e. T is connected but T e is disconnected for every edge $e \in T$

Equivalent definitions (Theorem 1.5.1, D)

- T is a tree of order n
 - \Leftrightarrow Any two vertices of T are linked by a unique path in T
 - \Leftrightarrow *T* is minimally connected
 - i.e. T is connected but T e is disconnected for every edge $e \in T$
 - \Leftrightarrow *T* is maximally acyclic
 - i.e. T contains no cycle but T + xy does for any non-adjacent vertices $x, y \in T$
 - \Leftrightarrow (Theorem 1.10, 1.12, H) *T* is connected with n 1 edges
 - \Leftrightarrow (Theorem 1.13, H) *T* is acyclic with n 1 edges

Leaves of tree

- A vertex of degree 1 in a tree is called a leaf
- Theorem (1.14, H; Ex9, S1.3.2, H) Let T be a tree of order $n \ge 2$. Then T has at least two leaves
- (Ex3, S1.3.2, H) Let T be a tree with max degree Δ . Then T has at least Δ leaves
- (Ex10, S1.3.2, H) Let T be a tree of order $n \ge 2$. Then the number of leaves is

$$2 + \sum_{v:d(v) \ge 3} (d(v) - 2)$$

- (Ex8, S1.3.2, H) Every nonleaf in a tree is a cut vertex
- Every leaf node is not a cut vertex

The center of a tree is a vertex or 'an edge'

• Theorem (1.15, H) In any tree, the center is either a single vertex or a pair of adjacent vertices

Any tree can be embedded in a 'dense' graph

• Theorem (1.16, H) Let T be a tree of order k + 1 with k edges. Let G be a graph with $\delta(G) \ge k$. Then G contains T as a subgraph

Spanning tree

- Given a graph G and a subgraph T, T is a spanning tree of G if T is a tree that contains every vertex of G
- Example: A telecommunications company tries to lay cable in a new neighbourhood
- Proposition (2.1.5c, W) Every connected graph contains a spanning tree

Cayley's tree formula

- Theorem (1.18, H; 2.2.3, W). There are n^{n-2} distinct labeled trees of order n

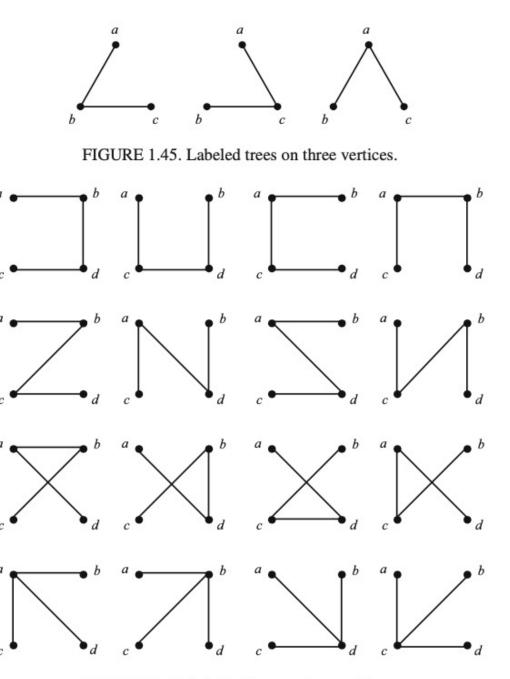


FIGURE 1.46. Labeled trees on four vertices.

Wiener index

• In a communication network, large diameter may be acceptable if most pairs can communicate via short paths. This leads us to study the average distance instead of the maximum

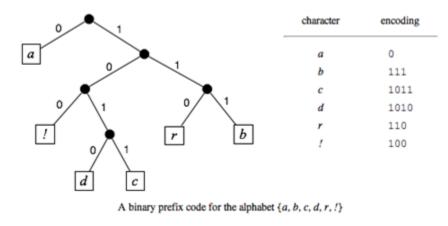
• Wiener index
$$D(G) = \sum_{u,v \in V(G)} d_G(u,v)$$

- Theorem (2.1.14, W) Among trees with n vertices, the Wiener index D(T) is minimized by stars and maximized by paths, both uniquely
- Over all connected *n*-vertex graphs, D(G) is minimized by K_n and maximized (2.1.16, W) by paths
 - (Lemma 2.1.15, W) If H is a subgraph of G, then $d_G(u, v) \le d_H(u, v)$

Prefix coding

- A binary tree is a rooted plane tree where each vertex has at most two children
- Given large computer files and limited storage, we want to encode characters as binary lists to minimize (expected) total length
- Prefix-free coding: no code word is an initial portion of another

• Example: 11001111011

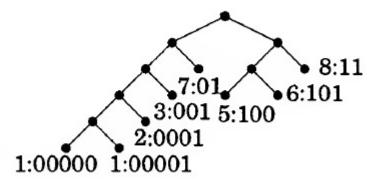


Huffman's Algorithm (2.3.13, W)

- Input: Weights (frequencies or probabilities) p_1, \ldots, p_n
- Output: Prefix-free code (equivalently, a binary tree)
- Idea: Infrequent items should have longer codes; put infrequent items deeper by combining them into parent nodes.
- Recursion: replace the two least likely items with probabilities p,p^\prime with a single item of weight $p+p^\prime$

Example (2.3.14, W)

а	5	100
b	1	00000
с	1	00001
d	7	01
е	8	11
f	2	0001
g	3	001
h	6	101



The average length is
$$\frac{5 \times 3 + 5 + 5 + 7 \times 2 + \dots}{33} = \frac{30}{11} < 3$$

Huffman coding is optimal

• Theorem (2.3.15, W) Given a probability distribution $\{p_i\}$ on n items, Huffman's Algorithm produces the prefix-free code with minimum expected length

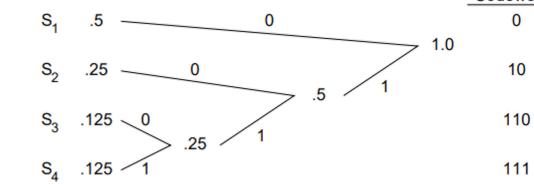
Huffman coding and entropy

• The entropy of a discrete probability distribution $\{p_i\}$ is that

$$H(p) = -\sum_{i} p_i \log_2 p_i$$

- Exercise (Ex2.3.31, W) $H(p) \leq \text{average length of Huffman coding} \leq$ H(p) + 1
- Exercise (Ex2.3.30, W) When each p_i is a power of $\frac{1}{2}$, average length of Huffman coding is H(p)Codewords

0



average length =
$$(1)\left(\frac{1}{2}\right) + (2)\left(\frac{1}{4}\right) + (3)\left(\frac{1}{8}\right) + (3)\left(\frac{1}{8}\right)$$

= 1.75 bits/symbol

$$H = \frac{1}{2}\log_2 2 + \frac{1}{4}\log_2 4 + \frac{1}{8}\log_2 8 + \frac{1}{8}\log_2 8$$

= $\frac{1}{2} + \frac{1}{2} + \frac{3}{8} + \frac{3}{8}$
= 1.75 54

Lecture 4: Circuits

Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS445/index.html

Eulerian circuit

- A closed walk through a graph using every edge once is called an Eulerian circuit
- A graph that has such a walk is called an Eulerian graph
- Theorem (1.2.26, W) A graph G is Eulerian ⇔ it has at most one nontrivial component and its vertices all have even degree
- (possibly with multiple edges)
- Proof "⇒" That G must be connected is obvious.
 Since the path enters a vertex through some edge and leaves by another edge, it is clear that all degrees must be even

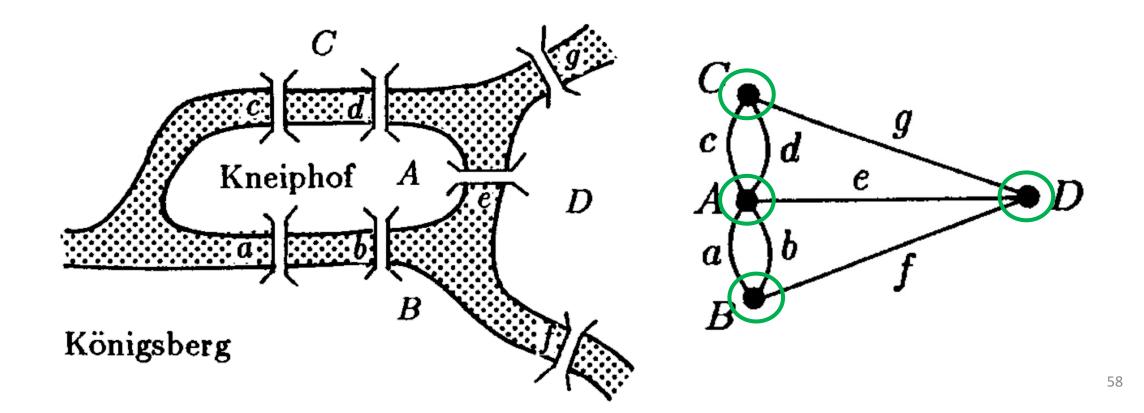
Key lemma

• Lemma (1.2.25, W) If every vertex of a graph G has degree at least 2, then G contains a cycle.

Proposition (1.3.1, D) Every graph G contains a path of length $\delta(G)$ and a cycle of length at least $\delta(G) + 1$, provided $\delta(G) \ge 2$.

Eulerian circuit

 Theorem (1.2.26, W) A graph G is Eulerian ⇔ it has at most one nontrivial component and its vertices all have even degree



Other properties

- Proposition (1.2.27, W) Every even graph decomposes into cycles
- The necessary and sufficient condition for a directed Eulerian circuit is that the graph is connected and that each vertex has the same 'indegree' as 'out-degree'

TONCAS

- TONCAS: The obvious necessary condition is also sufficient
- Theorem (1.2.26, W) A graph G is Eulerian ⇔ it has at most one nontrivial component and its vertices all have even degree
- Proposition (1.3.28, W) The nonnegative integers d_1, \ldots, d_n are the vertex degrees of some graph $\Leftrightarrow \sum_{i=1}^n d_i$ is even
- (Possibly with loops)
- Otherwise (2,0,0) is not realizable
- **1.3.63.** (!) Let d_1, \ldots, d_n be integers such that $d_1 \ge \cdots \ge d_n \ge 0$. Prove that there is a loopless graph (multiple edges allowed) with degree sequence d_1, \ldots, d_n if and only if $\sum d_i$ is even and $d_1 \le d_2 + \cdots + d_n$. (Hakimi [1962])

Hamiltonian path/circuits

- A path P is Hamiltonian if V(P) = V(G)
 - Any graph contains a Hamiltonian path is called traceable
- A cycle C is called Hamiltonian if it spans all vertices of G
 - A graph is called Hamiltonian if it contains a Hamiltonian circuit
- In the mid-19th century, Sir William Rowan Hamilton tried to popularize the exercise of finding such a closed path in the graph of the dodecahedron (正十二面体)

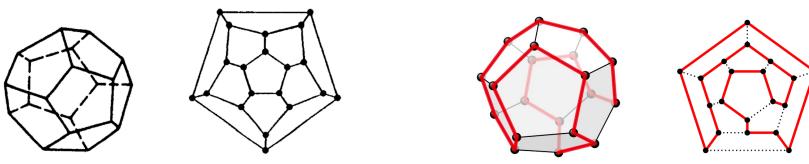
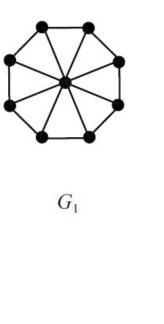


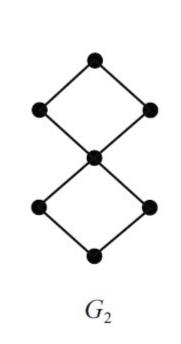
Figure 1.9

Degree parity is not a criterion

Theorem (1.2.26, W) A graph G is Eulerian \Leftrightarrow it has at most one nontrivial component and its vertices all have even degree

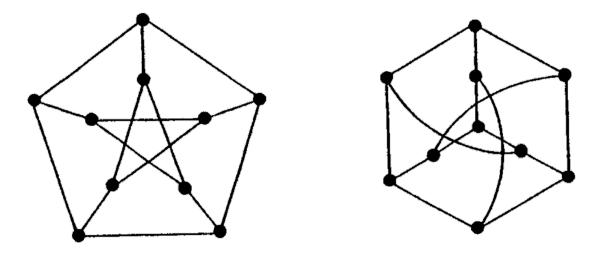
- Hamiltonian graphs
 - all even degrees C₁₀
 - all odd degrees K₁₀
 - a mixture G_1
- non-Hamiltonian graphs
 - all even G_2
 - all odd $K_{5,7}$
 - mixed P_9





Example

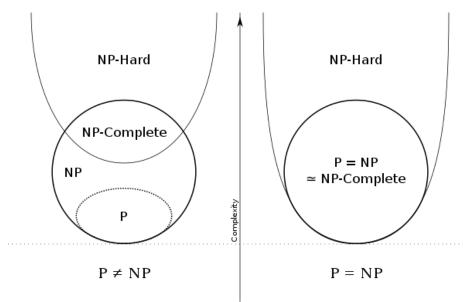
• The Petersen graph has a Hamiltonian path but no Hamiltonian cycle



• Determining whether such paths and cycles exist in graphs is the Hamiltonian path problem, which is NP-complete

P, NP, NPC, NP-hard

- P The general class of questions for which some algorithm can provide an answer in polynomial time
- NP (nondeterministic polynomial time) The class of questions for which an answer can be *verified* in polynomial time
- NP-Complete
 - 1. c is in NP
 - 2. Every problem in NP is reducible to c in polynomial time
- NP-hard
 - c is in NP
 - Every problem in NP is reducible to c in polynomial time



Large minimal degree implies Hamiltonian

• Theorem (1.22, H, Dirac) Let G be a graph of order $n \ge 3$. If $\delta(G) \ge n/2$, then G is Hamiltonian

Proposition (1.3.15, W) If $\delta(G) \ge \frac{n-1}{2}$, then *G* is connected (Ex16, S1.1.2, H) (1.3.16, W) If $\delta(G) \ge \frac{n-2}{2}$, then *G* need not be connected

- The bound is tight (Ex12b, S1.4.3, H) $G = K_{r,r+1}$ is not Hamiltonian Exercise The condition when $K_{r,s}$ is Hamiltonian
- The condition is not necessary
 - C_n is Hamiltonian but with small minimum (and even maximum) degree

Generalized version

• Exercise (Theorem 1.23, H, Ore; Ex3, S1.4.3, H) Let G be a graph of order $n \ge 3$. If $deg(x) + deg(y) \ge n$ for all pairs of nonadjacent vertices x, y, then G is Hamiltonian

Theorem (1.22, H, Dirac) Let G be a graph of order $n \ge 3$. If $\delta(G) \ge n/2$, then G is Hamiltonian

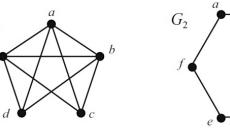
Independence number & Hamiltonian

- A set of vertices in a graph is called independent if they are pairwise nonadjacent
- The independence number of a graph G, denoted as $\alpha(G)$, is the largest size of an independent set

• Example:
$$\alpha(G_1) = 2, \alpha(G_2) = 3$$

• Theorem (1.24, H) Let G be a connected graph of order $n \ge 3$. If $\kappa(G) \ge \alpha(G)$, then G is Hamiltonian

(Ex14, S1.1.2, H) $\kappa(G) \ge 2$ implies G has at least one cycle



Independence number & Hamiltonian 2

Theorem (1.24, H) Let G be a connected graph of order $n \ge 3$. If $\kappa(G) \ge \alpha(G)$, then G is Hamiltonian

• The result is tight: $\kappa(G) \ge \alpha(G) - 1$ is not enough

•
$$K_{r,r+1}$$
: $\kappa = r, \alpha = r+1$

• Exercise (Ex4, S1.4.3, H) Peterson graph: $\kappa = 3$, $\alpha = 4$

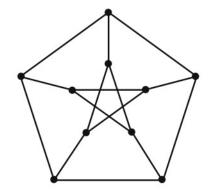
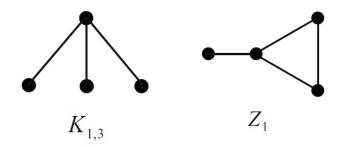


FIGURE 1.63. The Petersen Graph.

Pattern-free & Hamiltonian



- *G* is *H*-free if *G* doesn't contain a copy of *H* as induced subgraph
- Theorem (1.25, H) If G is 2-connected and $\{K_{1,3}, Z_1\}$ -free, then G is Hamiltonian

(Ex14, S1.1.2, H) $\kappa(G) \ge 2$ implies G has at least one cycle

- The condition 2-connectivity is necessary
- (Ex2, S1.4.3, H) If G is Hamiltonian, then G is 2-connected

Lecture 5: Matchings

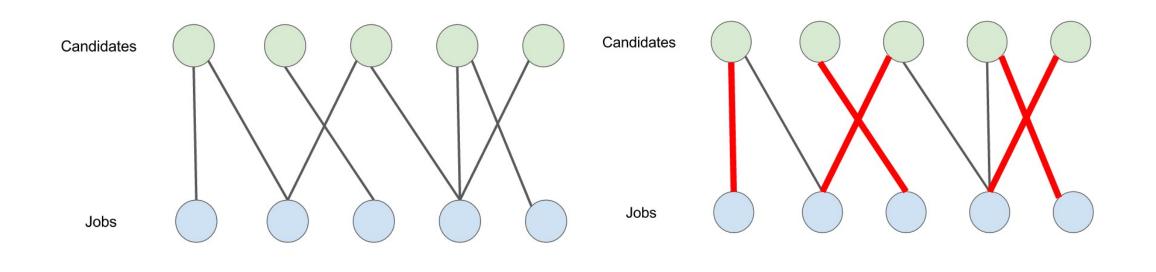
Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS445/index.html

Motivating example

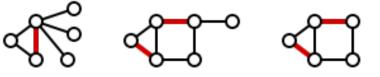


Definitions

- A matching is a set of independent edges, in which no pair of edges shares a vertex
- The vertices incident to the edges of a matching M are M-saturated (饱和的); the others are M-unsaturated
- A perfect matching in a graph is a matching that saturates every vertex
- Example (3.1.2, W) The number of perfect matchings in $K_{n,n}$ is n!
- Example (3.1.3, W) The number of perfect matchings in K_{2n} is $f_n = (2n-1)(2n-3) \cdots 1 = (2n-1)!!$

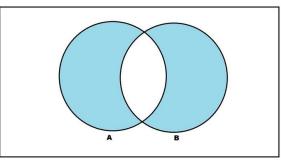
Maximal/maximum matchings 极大/最大

- A maximal matching in a graph is a matching that cannot be enlarged by adding an edge
- A maximum matching is a matching of maximum size among all matchings in the graph
- Example: P_3 , P_5

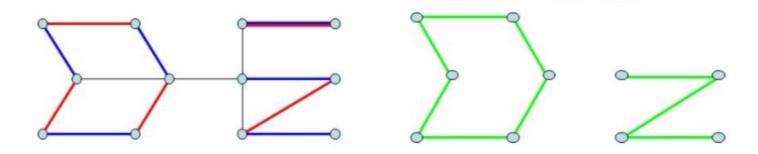


• Every maximum matching is maximal, but not every maximal matching is a maximum matching

Symmetric difference of matchings



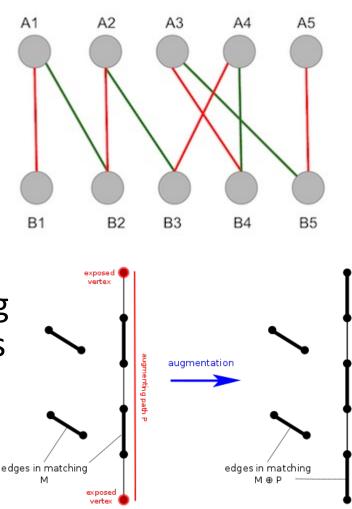
- The symmetric difference of M, M' is $M\Delta M' = (M M') \cup (M' M)$
- Lemma (3.1.9, W) Every component of the symmetric difference of two matchings is a path or an even cycle



Maximum matching and augmenting path

- Given a matching *M*, an *M*-alternating path is a path that alternates between edges in *M* and edges not in *M*
- An *M*-alternating path whose endpoints are *M*-unsaturated is an *M*-augmenting path
- Theorem (3.1.10, W; 1.50, H; Berge 1957) A matching *M* in a graph *G* is a maximum matching in *G* ⇔ *G* has no *M*-augmenting path

Lemma (3.1.9, W) Every component of the symmetric difference of two matchings is a path or an even cycle



Hall's theorem (TONCAS)

• Theorem (3.1.11, W; 1.51, H; 2.1.2, D; Hall 1935) Let *G* be a bipartite graph with partition *X*, *Y*.

G contains a matching of $X \Leftrightarrow |N(S)| \ge |S|$ for all $S \subseteq X$

Theorem (3.1.10, W; 1.50, H; Berge 1957) A matching M in a graph G is a maximum matching in $G \Leftrightarrow G$ has no M-augmenting path

- Exercise. Read the other two proofs in Diestel.
- Corollary (3.1.13, W; 2.1.3, D) Every k-regular (k > 0) bipartite graph has a perfect matching

General regular graph

- Corollary (2.1.5, D) Every regular graph of positive even degree has a 2-factor
 - A k-regular spanning subgraph is called a k-factor
 - A perfect matching is a 1-factor

Theorem (1.2.26, W) A graph G is Eulerian \Leftrightarrow it has at most one nontrivial component and its vertices all have even degree

Corollary (3.1.13, W; 2.1.3, D) Every k-regular (k > 0) bipartite graph has a perfect matching

Application to SDR

• Given some family of sets *X*, a system of distinct representatives for the sets in *X* is a 'representative' collection of distinct elements from the sets of *X*

$$S_1 = \{2, 8\},$$

$$S_2 = \{8\},$$

$$S_3 = \{5, 7\},$$

$$S_4 = \{2, 4, 8\},$$

$$S_5 = \{2, 4\}.$$

The family $X_1 = \{S_1, S_2, S_3, S_4\}$ does have an SDR, namely $\{2, 8, 7, 4\}$. The family $X_2 = \{S_1, S_2, S_4, S_5\}$ does not have an SDR.

Theorem(1.52, H) Let S₁, S₂, ..., S_k be a collection of finite, nonempty sets. This collection has SDR ⇔ for every t ∈ [k], the union of any t of these sets contains at least t elements

Theorem (3.1.11, W; 1.51, H; 2.1.2, D; Hall 1935) Let G be a bipartite graph with partition X, Y. G contains a matching of $X \Leftrightarrow |N(S)| \ge |S|$ for all $S \subseteq X$ König Theorem Augmenting Path Algorithm

Vertex cover

- A set $U \subseteq V$ is a (vertex) cover of E if every edge in G is incident with a vertex in U
- Example:
 - Art museum is a graph with hallways are edges and corners are nodes
 - A security camera at the corner will guard the paintings on the hallways
 - The minimum set to place the cameras?

König-Egeváry Theorem (Min-max theorem)

• Theorem (3.1.16, W; 1.53, H; 2.1.1, D; König 1931; Egeváry 1931) Let *G* be a bipartite graph. The maximum size of a matching in *G* is equal to the minimum size of a vertex cover of its edges

Theorem (3.1.10, W; 1.50, H; Berge 1957) A matching M in a graph G is a maximum matching in $G \Leftrightarrow G$ has no M-augmenting path

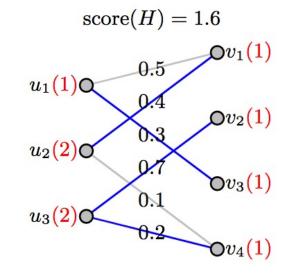
Weighted Bipartite Matching Hungarian Algorithm

Weighted bipartite matching

- The maximum weighted matching problem is to seek a perfect matching M to maximize the total weight w(M)
- Bipartite graph
 - W.I.o.g. Assume the graph is $K_{n,n}$ with $w_{i,j} \ge 0$ for all $i, j \in [n]$
 - Optimization:

$$\max w(M_a) = \sum_{\substack{i,j \\ i,j}} a_{i,j} w_{i,j}$$

s.t. $a_{i,1} + \dots + a_{i,n} \le 1$ for any i
 $a_{1,j} + \dots + a_{n,j} \le 1$ for any j
 $a_{i,j} \in \{0,1\}$



- Integer programming
- General IP problems are NP-Complete

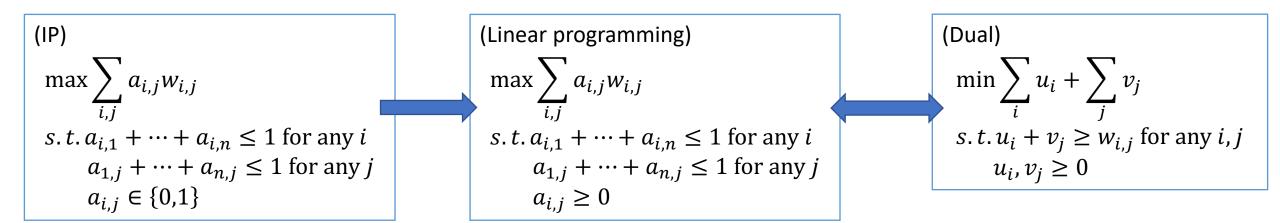
(Weighted) cover

- A (weighted) cover is a choice of labels u_1, \ldots, u_n and v_1, \ldots, v_n such that $u_i + v_j \ge w_{i,j}$ for all i, j
 - The cost c(u, v) of a cover (u, v) is $\sum_i u_i + \sum_j v_j$
 - The minimum weighted cover problem is that of finding a cover of minimum cost
- Optimization problem

$$\min c(u, v) = \sum_{i} u_{i} + \sum_{j} v_{j}$$

s.t. $u_{i} + v_{j} \ge w_{i,j}$ for any i, j
 $u_{i}, v_{j} \ge 0$ for any i, j

Duality



- Weak duality theorem
 - For each feasible solution *a* and (*u*, *v*)

$$\sum_{i,j} a_{i,j} w_{i,j} \leq \sum_{i} u_i + \sum_{j} v_j$$

thus max $\sum_{i,j} a_{i,j} w_{i,j} \leq \min \sum_{i} u_i + \sum_{j} v_j$

Duality (cont.)

- Strong duality theorem
 - If one of the two problems has an optimal solution, so does the other one and that the bounds given by the weak duality theorem are tight

$$\max \sum_{i,j} a_{i,j} w_{i,j} = \min \sum_i u_i + \sum_j v_j$$

• Lemma (3.2.7, W) For a perfect matching M and cover (u, v) in a weighted bipartite graph G, $c(u, v) \ge w(M)$. $c(u, v) = w(M) \Leftrightarrow M$ consists of edges $x_i y_j$ such that $u_i + v_j = w_{i,j}$ In this case, M and (u, v) are optimal.

Equality subgraph

- The equality subgraph $G_{u,v}$ for a cover (u, v) is the spanning subgraph of $K_{n,n}$ having the edges $x_i y_j$ such that $u_i + v_j = w_{i,j}$
 - So if c(u, v) = w(M) for some perfect matching M, then M is composed of edges in $G_{u,v}$
 - And if $G_{u,v}$ contains a perfect matching M, then (u, v) and M (whose weights are $u_i + v_j$) are both optimal

Back to (unweighted) bipartite graph

- The weights are binary 0,1
- Hungarian algorithm always maintain integer labels in the weighted cover, thus the solution will always be 0,1
- The vertices receiving label 1 must cover the weight on the edges, thus cover all edges
- So the solution is a minimum vertex cover

Matchings in General Graphs

Perfect matchings

- K_{2n} , C_{2n} , P_{2n} have perfect matchings
- Corollary (3.1.13, W; 2.1.3, D) Every k-regular (k > 0) bipartite graph has a perfect matching
- Theorem(1.58, H) If G is a graph of order 2n such that $\delta(G) \ge n$, then G has a perfect matching

Theorem (1.22, H, Dirac) Let G be a graph of order $n \ge 3$. If $\delta(G) \ge n/2$, then G is Hamiltonian

Tutte's Theorem (TONCAS)

- Let q(G) be the number of connected components with odd order
- Theorem (1.59, H; 2.2.1, D; 3.3.3, W) Let G be a graph of order $n \ge 2$. G has a perfect matching $\Leftrightarrow q(G - S) \le |S|$ for all $S \subseteq V$

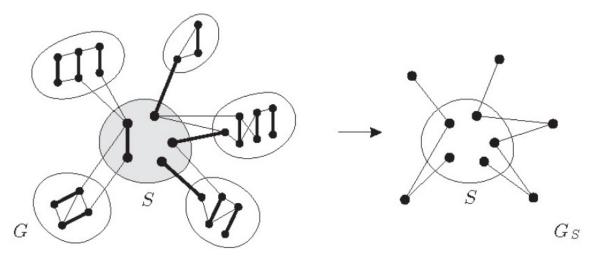


Fig. 2.2.1. Tutte's condition $q(G-S) \leq |S|$ for q = 3, and the contracted graph G_S from Theorem 2.2.3.

Petersen's Theorem

• Theorem (1.60, H; 2.2.2, D; 3.3.8, W) Every bridgeless, 3-regular graph contains a perfect matching

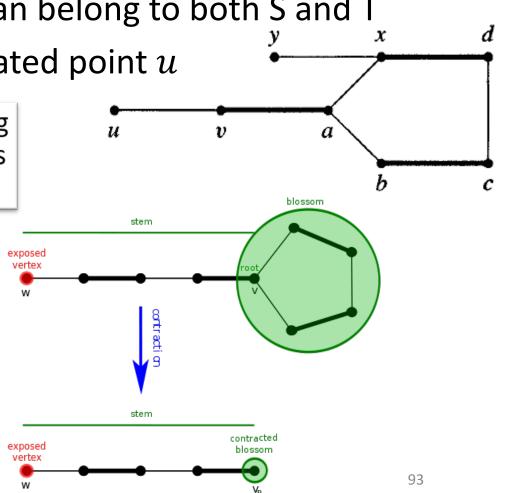
> Theorem (1.59, H; 2.2.1, D; 3.3.3, W) Let G be a graph of order $n \ge 2$. G has a perfect matching $\Leftrightarrow q(G - S) \le |S|$ for all $S \subseteq V$

Find augmenting paths in general graphs

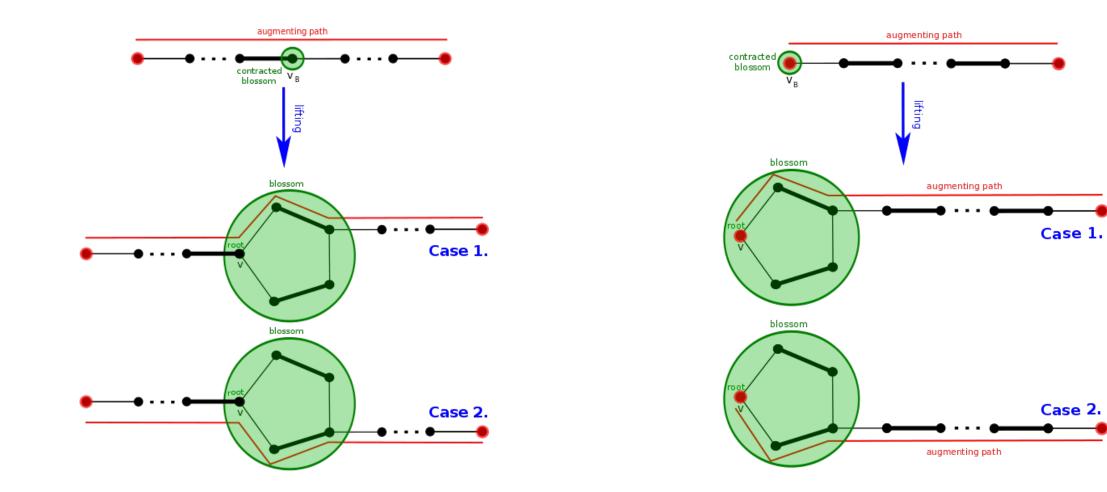
- Different from bipartite graphs, a vertex can belong to both S and T
- Example: How to explore from *M*-unsaturated point *u*

Theorem (3.1.10, W; 1.50, H; Berge 1957) A matching M in a graph G is a maximum matching in $G \Leftrightarrow G$ has no M-augmenting path

• Flower/stem/blossom



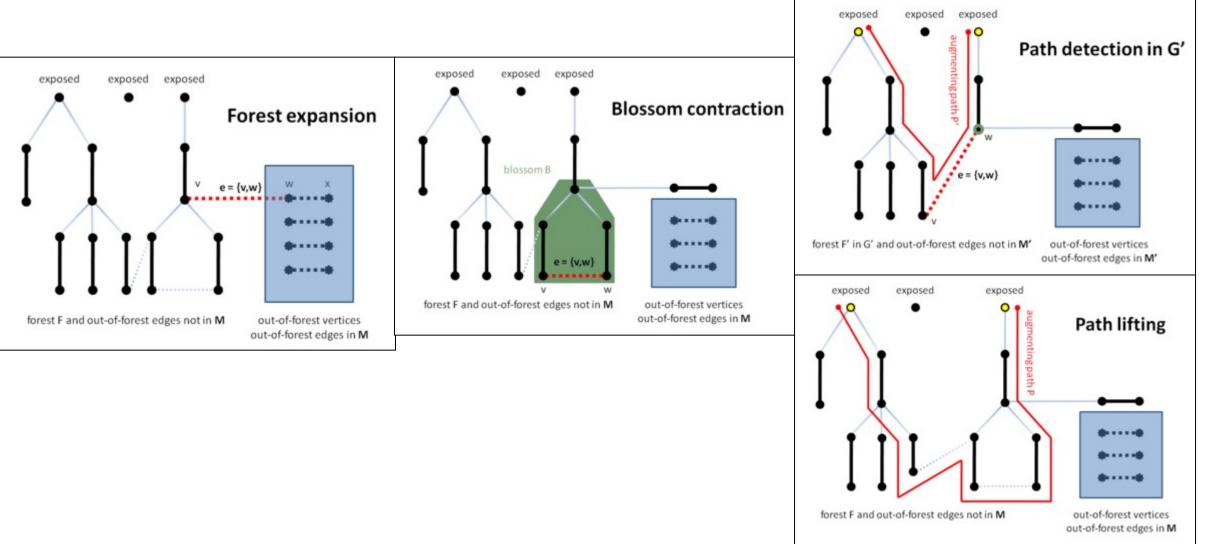
Lifting



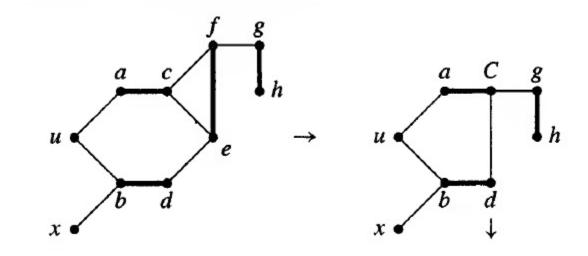
Edmonds' blossom algorithm (3.3.17, W)

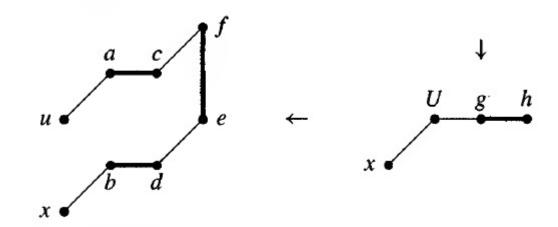
- Input: A graph G, a matching M in G, an M-unsaturated vertex u
- Idea: Explore M-alternating paths from *u*, recording for each vertex the vertex from which it was reached, and contracting blossoms when found
 - Maintain sets S and T analogous to those in Augmenting Path Algorithm, with S consisting of u and the vertices reached along saturated edges
 - Reaching an unsaturated vertex yields an augmentation.
- Initialization: $S = \{u\}$ and $T = \emptyset$
- Iteration: If S has no unmarked vertex, stop; there is no M-augmenting path from u
 - Otherwise, select an unmarked $v \in S$. To explore from v, successively consider each $y \in N(v)$ s.t. $y \notin T$
 - If y is unsaturated by M, then trace back from y (expanding blossoms as needed) to report an M-augmenting u, y-path
 - If $y \in S$, then a blossom has been found. Suspend the exploration of v and contract the blossom, replacing its vertices in S and T by a single new vertex in S. Continue the search from this vertex in the smaller graph.
 - Otherwise, y is matched to some w by M. Include y in T (reached from v), and include w in S (reached from y)
 - After exploring all such neighbors of v, mark v and iterate

Illustration



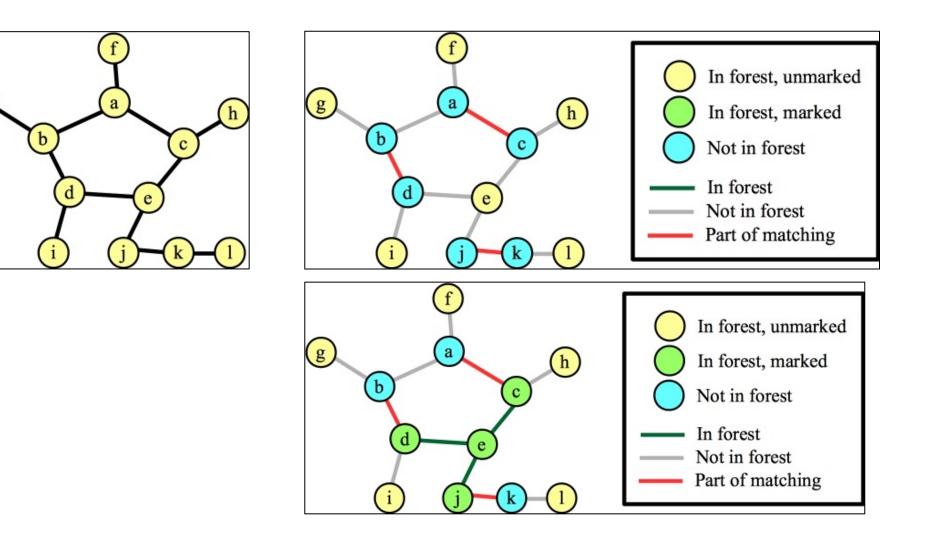
Example



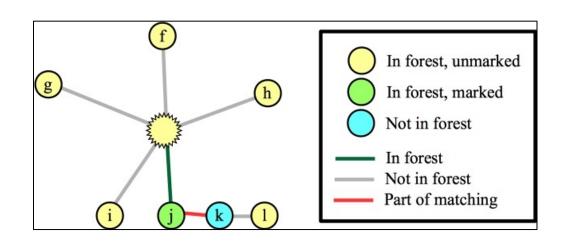


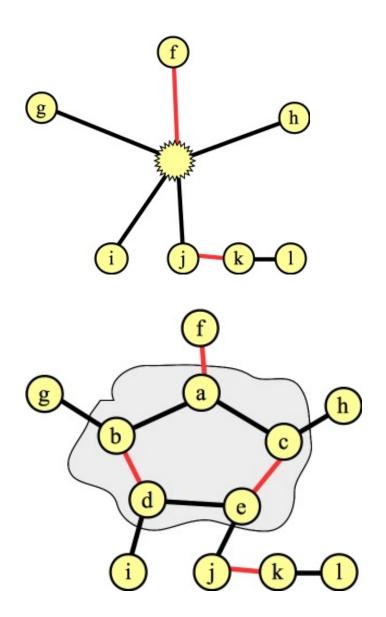
Example 2

g



Example 2 (cont.)





Lecture 6: More on Connectivity

Shuai Li

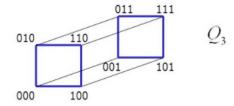
John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS445/index.html

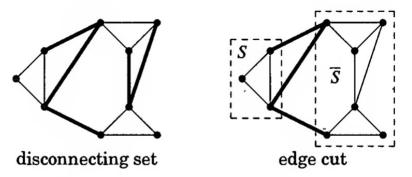
Vertex cut set and connectivity

- A proper subset S of vertices is a vertex cut set if the graph G − S is disconnected
- The connectivity, $\kappa(G)$, is the minimum size of a vertex set S of G such that G S is disconnected or has only one vertex
 - The graph is k-connected if $k \leq \kappa(G)$
- $\kappa(K_n):=n-1$
- If G is disconnected, $\kappa(G) = 0$
 - \Rightarrow A graph is connected $\Leftrightarrow \kappa(G) \ge 1$
- If G is connected, non-complete graph of order n, then $1 \le \kappa(G) \le n-2$



- For convention, $\kappa(K_1) = 0$
- Example (4.1.3, W) For k-dimensional cube $Q_k = \{0,1\}^k$, $\kappa(Q_k) = k$

Edge-connectivity



- A disconnecting set of edges is a set $F \subseteq E(G)$ such that G F has more than one component
 - A graph is *k*-edge-connected if every disconnecting set has at least *k* edges
 - The edge-connectivity of G, written λ(G), is the minimum size of a disconnecting set
- Given $S, T \subseteq V(G)$, we write [S, T] for the set of edges having one endpoint in S and the other in T
 - An edge cut is an edge set of the form [*S*, *S^c*] where *S* is a nonempty proper subset of *V*(*G*)
- Every edge cut is a disconnecting set, but not vice versa
- Remark (4.1.8, W) Every minimal disconnecting set of edges is an edge cut

Connectivity and edge-connectivity

• Proposition (1.4.2, D) If G is non-trivial, then $\kappa(G) \leq \lambda(G) \leq \delta(G)$

• If
$$\delta(G) \ge n-2$$
, then $\kappa(G) = \delta(G)$

that is $\kappa(G) = \lambda(G) = \delta(G)$

• Theorem (4.1.11, W) If G is a 3-regular graph, then $\kappa(G) = \lambda(G)$

Properties of edge cut

- When $\lambda(G) < \delta(G)$, a minimum edge cut cannot isolate a vertex
- Similarly for (any) edge cut
- Proposition (4.1.12, W) If S is a set of vertices in a graph G, then $|[S, S^c]| = \sum_{v \in S} d(v) - 2e(G[S])$
- Corollary (4.1.13, W) If G is a simple graph and $|[S, S^c]| < \delta(G)$, then $|S| > \delta(G)$
 - |S| must be much larger than a single vertex

Blocks

- A block of a graph G is a maximal connected subgraph of G that has no cut-vertex. If G itself is connected and has no cut-vertex, then G is a block
- Example

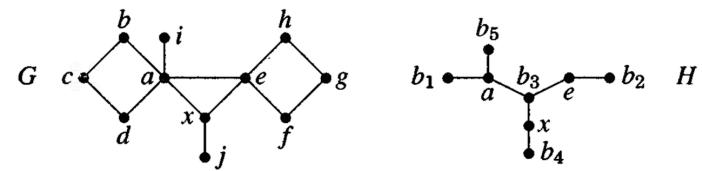
- Proposition (1.2.14, W) An edge *e* is a bridge \Leftrightarrow *e* lies on no cycle of *G*
- Or equivalently, an edge e is not a bridge $\Leftrightarrow e$ lies on a cycle of G
- An edge of a cycle cannot itself be a block
 - An edge is block \Leftrightarrow it is a bridge
 - The blocks of a tree are its edges
- If a block has more than two vertices, then it is 2-connected
 - The blocks of a loopless graph are its isolated vertices, bridges, and its maximal 2-connected subgraphs

Intersection of two blocks

- Proposition (4.1.19, W) Two blocks in a graph share at most one vertex
 - When two blocks share a vertex, it must be a cut-vertex
- Every edge is a subgraph with no cut-vertex and hence is in a block. Thus blocks in a graph decompose the edge set

Block-cutpoint graph

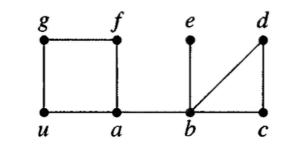
• The block-cutpoint graph of a graph G is a bipartite graph H in which one partite set consists of the cut-vertices of G, and the other has a vertex b_i for each block B_i of G. We include vb_i as an edge of $H \Leftrightarrow$ $v \in B_i$



• (Ex34, S4.1, W) When G is connected, its block-cutpoint graph is a tree

Depth-first search (DFS)

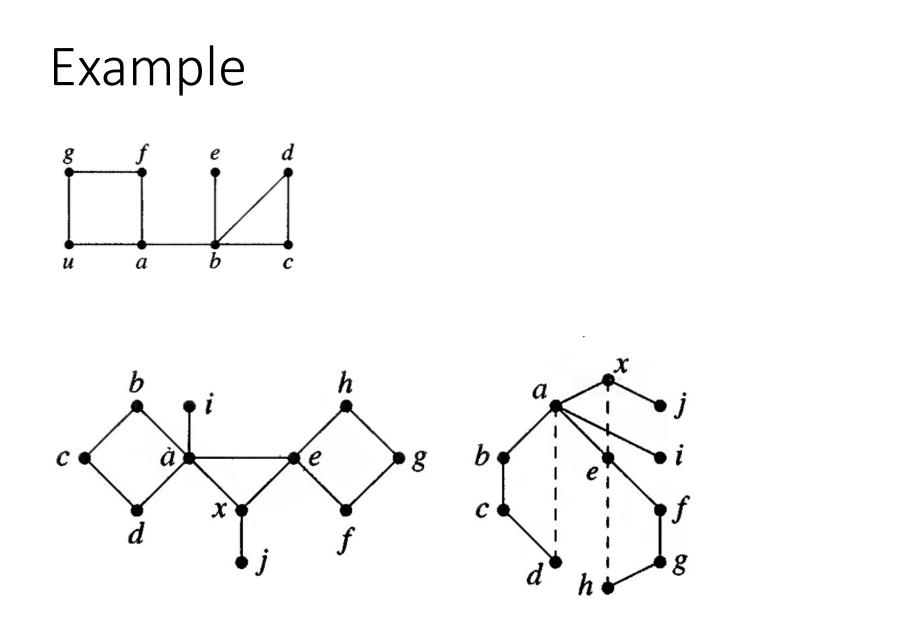
• Depth-first search



• Lemma (4.1.22, W) If T is a spanning tree of a connected graph grown by DFS from u, then every edge of G not in T consists of two vertices v, w such that v lies on the u, w-path in T

Finding blocks by DFS

- Input: A connected graph G
- Idea: Build a DFS tree T of G, discarding portions of T as blocks are identified. Maintain one vertex called ACTIVE
- Initialization: Pick a root $x \in V(H)$; make x ACTIVE; set $T = \{x\}$
- Iteration: Let v denote the current active vertex
 - If v has an unexplored incident edge vw, then
 - If $w \notin V(T)$, then add vw to T, mark vw explored, make w ACTIVE
 - If $w \in V(T)$, then w is an ancestor of v; mark vw explored
 - If v has no more unexplored incident edges, then
 - If $v \neq x$ and w is a parent of v, make w ACTIVE. If no vertex in the current subtree T' rooted at v has an explored edge to an ancestor above w, then $V(T') \cup \{w\}$ is the vertex set of a block; record this information and delete V(T')
 - if v = x, terminate



Strong orientation

- Theorem (2.5, L; 4.2.14, W; Robbins 1939) A graph has a strong orientation, i.e. an orientation that is a strongly connected digraph ⇔ it is 2-edge-connected
 - A directed graph is strongly connected if for every pair of vertices (*v*, *w*), there is a directed path from *v* to *w*
 - Proposition (2.4, L) Let xy ∈ T which is not a bridge in G and x is a parent of y. Then there exists an edge in G but not in T joining some descendant a of y and some ancestor b of x
 - The blocks of a loopless graph are its isolated vertices, bridges, and its maximal 2-connected subgraphs

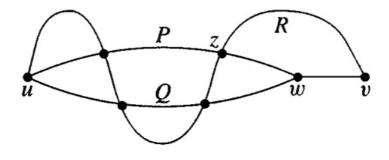
Lemma (4.1.22, W) If T is a spanning tree of a connected graph grown by DFS from u, then every edge of G not in T consists of two vertices v, w such that v lies on the u, w-path in T

2-Connected Graphs

2-connected graphs

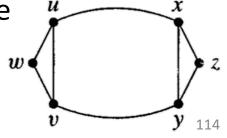
- Two paths from u to v are internally disjoint if they have no common internal vertex
- Theorem (4.2.2, W; Whitney 1932)

A graph G having at least three vertices is 2-connected \Leftrightarrow for each pair $u, v \in V(G)$ there exist internally disjoint u, v-paths in G



Equivalent definitions for 2-connected graphs

- Lemma (4.2.3, W; Expansion Lemma) If G is a k-connected graph, and G' is obtained from G by adding a new vertex y with at least k neighbors in G, then G' is k-connected
- Theorem (4.2.4, W) For a graph G with at least three vertices, TFAE
 - *G* is connected and has no cut-vertex
 - For all $x, y \in V(G)$, there are internally disjoint x, y-paths
 - For all $x, y \in V(G)$, there is a cycle through x and y
 - $\delta(G) \ge 1$ and every pair of edges in G lies on a common cycle



Ear decomposition

- An ear of a graph G is a maximal path whose internal vertices have degree 2 in G
- An ear decomposition of G is a decomposition P_0, \dots, P_k such that P_0 is a cycle and P_i for $i \ge 1$ is an ear of $P_0 \cup \dots \cup P_i$
- Theorem (4.2.8, W)
 A graph is 2-connected ⇔ it has an ear decomposition.

 Furthermore, every cycle in a 2-connected graph is the initial cycle in some ear decomposition
 - Corollary (4.2.6, W) If G is 2-connected, then the graph G' obtained by subdividing an edge of G is 2-connected
 - (Ex14, S1.1.2, H) $\kappa(G) \ge 2$ implies G has at least one cycle

 P_3

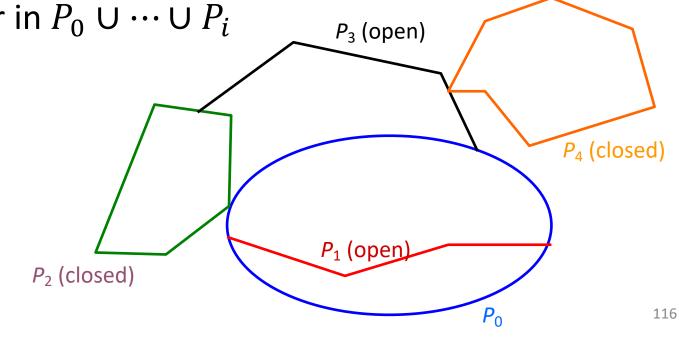
 P_0

 P_4

 P_2

Closed-ear

- A closed ear of a graph G is a cycle C such that all vertices of C except one have degree 2 in G
- A closed-ear decomposition of G is a decomposition $P_0, ..., P_k$ such that P_0 is a cycle and P_i for $i \ge 1$ is an (open) ear or a closed ear in $P_0 \cup \cdots \cup P_i$ P_2 (open)



Closed-ear decomposition

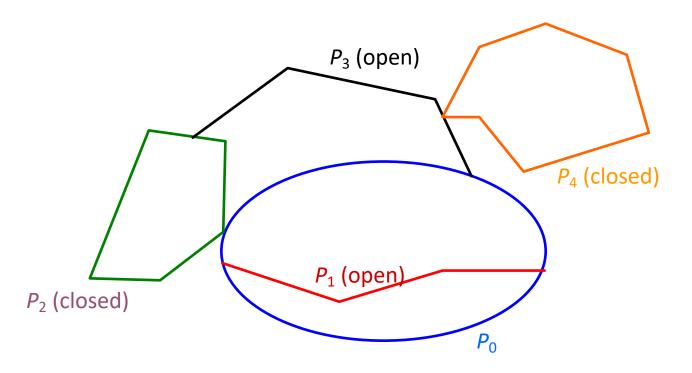
• Theorem (4.2.10, W)

A graph is 2-edge-connected \Leftrightarrow it has a closed-ear decomposition. Every cycle in a 2-edge-connected graph is the initial cycle in some such decomposition

```
Proposition (1.2.14, W)
An edge e is a bridge \Leftrightarrow e lies on no cycle of G
• Or equivalently, an edge e is not a bridge \Leftrightarrow e lies on a cycle of G
```

Strong orientation (Revisited)

Theorem (2.5, L; 4.2.14, W; Robbins 1939) A graph has a strong orientation, i.e. an orientation that is a strongly connected digraph ⇔ it is 2-edge-connected



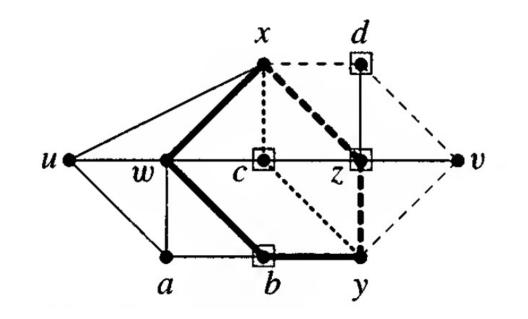
k-Connected and k-Edge-Connected graphs

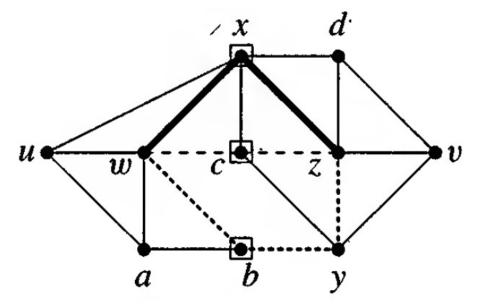
x,*y*-cut

- Given $x, y \in V(G)$, a set $S \subseteq V(G) \{x, y\}$ is an x, y-separator or x, y-cut if G S has no x, y-path
 - Let $\kappa(x, y)$ be the minimum size of an x, y-cut
 - Let $\lambda(x, y)$ be the maximum size of a set of pairwise internally disjoint x, y-paths
 - $\kappa(x, y) \ge \lambda(x, y)$
- For $X, Y \subseteq V(G)$, an X, Y-path is a path having first vertex in X, last vertex in Y, and no other vertex in $X \cup Y$

Example (4.2.16, W)

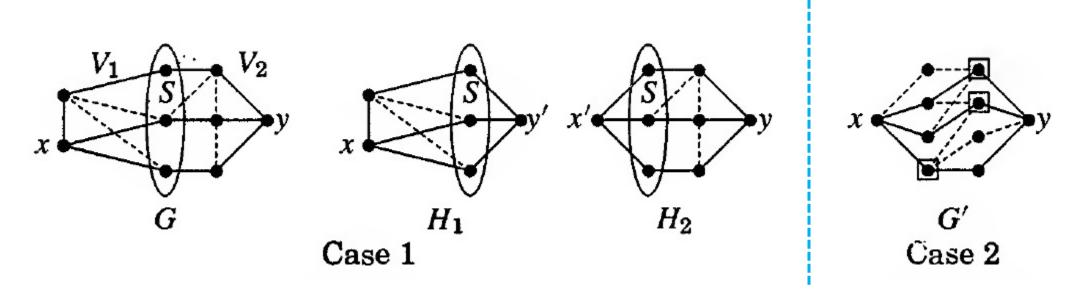
- $S = \{b, c, z, d\}$
- $\kappa(x, y) = \lambda(x, y) = 4$
- $\kappa(w, z) = \lambda(w, z) = 3$





Menger's Theorem

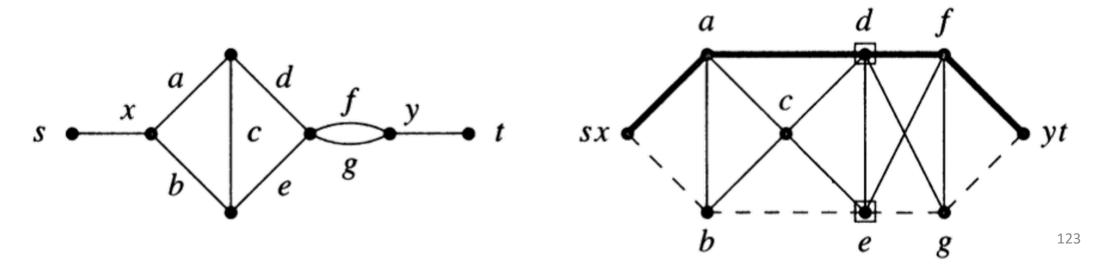
• Theorem (4.2.17, W; 3.3.1, D; Menger, 1927) If x, y are vertices of a graph G and $xy \notin E(G)$, then $\kappa(x, y) = \lambda(x, y)$



Theorem (3.1.16, W; 1.53, H; 2.1.1, D; König 1931; Egeváry 1931) Let *G* be a bipartite graph. The maximum size of a matching in *G* is equal to the minimum size of a vertex cover of its edges

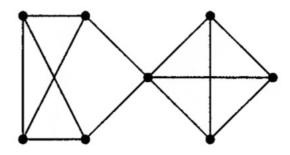
Edge version

- Theorem (4.2.19, W) If x and y are distinct vertices of a graph G, then the minimum size κ'(x, y) of an x, y-disconnecting set of edges equals the maximum number λ'(x, y) of pairwise edge-disjoint x, ypaths
 - The line graph L(G) of a graph G is the graph whose vertices are the edges of G with $ef \in E(L(G))$ when e = uv and f = vw in G



Back to connectivity

- Theorem (4.2.21, W) $\kappa(G) = \min_{\substack{x \neq y \in V(G)}} \lambda(x, y), \qquad \lambda(G) = \min_{\substack{x \neq y \in V(G)}} \lambda'(x, y)$
 - Lemma (4.2.20, W) Deletion of an edge reduces connectivity by at most 1



Application of Menger's Theorem

CSDR

Let A = A₁, ..., A_m and B = B₁, ..., B_m be two family of sets. A common system of distinct representatives (CSDR) is a set of m elements that is both an system of distinct representatives (SDR) for A and an SDR for B

Given some family of sets X, a system of distinct representatives for the sets in X is a 'representative' collection of distinct elements from the sets of X

S₁ = {2,8},
S₂ = {8},
S₃ = {5,7},
S₄ = {2,4,8},
S₅ = {2,4}.

The family X₁ = {S₁, S₂, S₃, S₄} does have an SDR, namely {2,8,7,4}. The family X₂ = {S₁, S₂, S₄, S₅} does not have an SDR.
Theorem(1.52, H) Let S₁, S₂, ..., S_k be a collection of finite, nonempty sets. This collection has SDR ⇔ for every t ∈ [k], the union of any t of these sets contains at least t elements

Equivalent condition for CSDR

• Theorem (4.2.25, W; Ford-Fulkerson 1958) Families $A = \{A_1, ..., A_m\}$ and $B = \{B_1, ..., B_m\}$ have a common system of distinct representatives (CSDR) \Leftrightarrow

$$\left| \left(\bigcup_{i \in I} A_i \right) \cap \left(\bigcup_{j \in J} B_j \right) \right| \ge |I| + |J| - m$$

for every pair $I, J \subseteq [m]$

Lecture 7: Coloring

Shuai Li

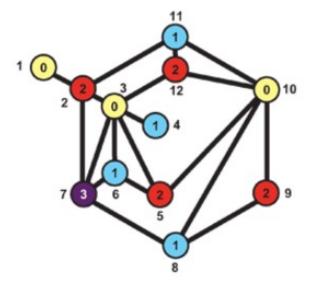
John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS445/index.html

Motivation: Scheduling and coloring

- University examination timetabling
 - Two courses linked by an edge if they have the same students
- Meeting scheduling
 - Two meetings are linked if they have same member



Definitions

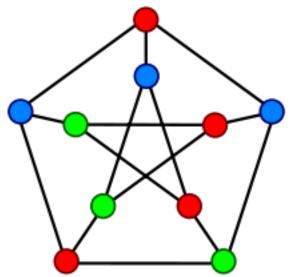
- Given a graph G and a positive integer k, a k-coloring is a function
 K: V(G) → {1, ..., k} from the vertex set into the set of positive
 integers less than or equal to k. If we think of the latter set as a set of
 k "colors," then K is an assignment of one color to each vertex.
- We say that K is a proper k-coloring of G if for every pair u, v of adjacent vertices, $K(u) \neq K(v)$ that is, if adjacent vertices are colored differently. If such a coloring exists for a graph G, we say that G is k-colorable
- In a proper coloring, each color class is an independent set. Then G is k-colorable $\Leftrightarrow V(G)$ is the union of k independent sets

Chromatic number

• Given a graph G, the chromatic number of G, denoted by $\chi(G)$, is the smallest integer k such that G is k-colorable. G is said to be k-chromatic

• Examples

 $\chi(C_n) = \begin{cases} 2 & \text{if } n \text{ is even,} \\ 3 & \text{if } n \text{ is odd,} \end{cases}$ $\chi(P_n) = \begin{cases} 2 & \text{if } n \ge 2, \\ 1 & \text{if } n = 1, \end{cases}$ $\chi(K_n) = n,$ $\chi(E_n) = 1, \quad \leftarrow \text{Empty graph}$ $\chi(K_{m,n}) = 2.$



 (Ex5, S1.6.1, H) A graph G of order at least two is bipartite ⇔ it is 2colorable

```
Theorem (1.2.18, W, Kőnig 1936)
A graph is bipartite ⇔ it contains no odd cycle
```

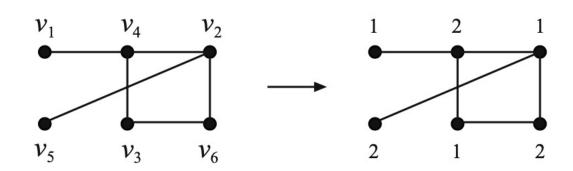
Bounds on Chromatic number

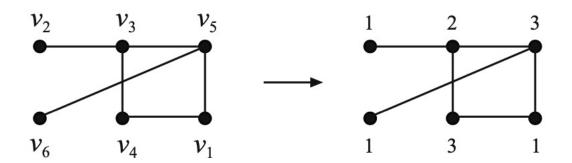
- Theorem (1.41, H) For any graph G of order $n, \chi(G) \leq n$
- It is tight since $\chi(K_n) = n$
- $\chi(G) = n \Leftrightarrow G = K_n$

Greedy algorithm

- First label the vertices in some order—call them v_1, v_2, \dots, v_n
- Next, order the available colors (1,2, ..., n) in some way
 - Start coloring by assigning color 1 to vertex v_1
 - If v_1 and v_2 are adjacent, assign color 2 to vertex v_2 ; otherwise, use color 1
 - To color vertex v_i , use the first available color that has not been used for any of v_i 's previously colored neighbors

Examples: Different orders result in different number of colors



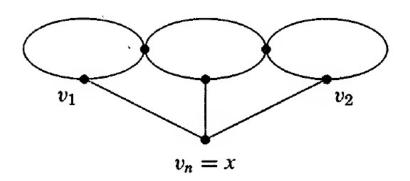


Bound using the greedy algorithm

• Theorem (1.42, H) For any graph G, $\chi(G) \le \Delta(G) + 1$ The equality is obtained for complete graphs and odd cycles

Brooks's theorem

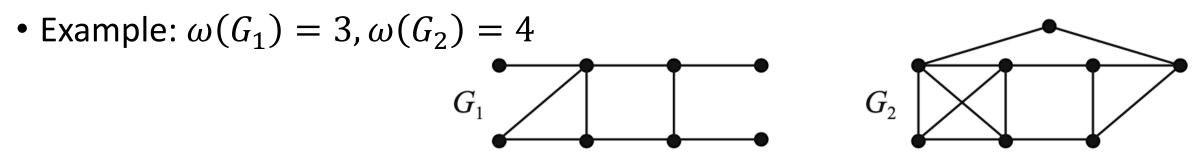
• Theorem (1.43, H; 5.1.22, W; 5.2.4, D; Brooks 1941) If G is a connected graph that is neither an odd cycle or a complete graph, then $\chi(G) \leq \Delta(G)$



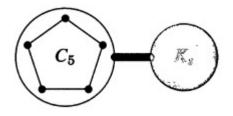
• ⇒The Petersen graph is 3-colorable

Chromatic number and clique number

• The clique number $\omega(G)$ of a graph is defined as the order of the largest complete graph that is a subgraph of G



- Theorem (1.44, H; 5.1.7, W) For any graph $G, \chi(G) \ge \omega(G)$
- Example (5.1.8, W) For $G = C_{2r+1} \vee K_s$, $\chi(G) > \omega(G)$



Chromatic number and independence number

• Theorem (1.45, H; 5.1.7, W; Ex6, S1.6.2, H) For any graph *G* of order *n*,

$$\frac{n}{\alpha(G)} \le \chi(G) \le n + 1 - \alpha(G)$$

The independence number of a graph G, denoted as $\alpha(G)$, is the largest size of an independent set

In a proper coloring, each color class is an independent set. Then G is k-colorable $\Leftrightarrow V(G)$ is the union of k independent sets

Extremal properties for k-chromatic graphs

- Proposition (5.2.5, W) Every k-chromatic graph with n vertices has at least $\binom{k}{2}$ edges
 - Equality holds for a complete graph plus isolated vertices.

In a proper coloring, each color class is an independent set. Then G is k-colorable $\Leftrightarrow V(G)$ is the union of k independent sets

- The Turán graph $T_{n,r}$ is the complete r-partite graph with n vertices whose partite sets differ by at most 1 vertex
 - Every partite set has size $\lfloor n/r \rfloor$ or $\lceil n/r \rceil$
- Lemma (5.2.8, W) Among simple *r*-partite (that is, *r*-colorable) graphs with *n* vertices, the Turán graph is the unique graph with the most edges
- Turán's Theorem (5.2.9, W; Turán 1941) Among the n-vertex simple K_{r+1} free graphs, $T_{n,r}$ has the maximum number of edges

Color-critical

- If $\chi(H) < \chi(G) = k$ for every proper subgraph *H*, then *G* is colorcritical or *k*-critical
- K_2 is the only 2-critical graph K_1 is the only 1-critical graph
- (5.2.12, W) A graph with no isolated vertices is color-critical $\Leftrightarrow \chi(G e) < \chi(G)$ for every edge $e \in E(G)$
- Proposition (5.2.13, W) Let G be a k-critical graph

 (a) For every v ∈ V(G), there is a proper coloring such that v has a unique color and other k − 1 colors all appear on N(v)
 ⇒ δ(G) ≥ k − 1
 (b) For every e ∈ E(G), every proper (k − 1)-coloring of G − e gives the same color to the two endpoints of e

Color-critical has edge-connectivity

- Theorem (5.2.16, W; Dirac 1953) Every k-critical graph is (k 1)edge-connected
- Lemma (5.2.15, W; Kainen) Let G be a graph with $\chi(G) > k$ and let X, Y be a partition of V(G). If G[X] and G[Y] are k-colorable, then the edge cut [X, Y] has at least k edges

Theorem (3.1.16, W; 1.53, H; 2.1.1, D; König 1931; Egeváry 1931) Let *G* be a bipartite graph. The maximum size of a matching in *G* is equal to the minimum size of a vertex cover of its edges

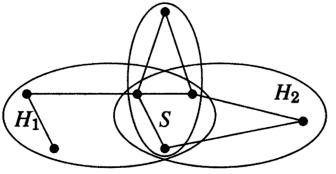
Remark (4.1.8, W) Every minimal disconnecting set of edges is an edge cut

Η

 Y_2

Color-critical and vertex cut set

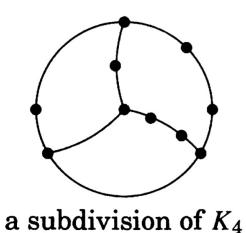
• Let S be a set of vertices in a graph G. An S-lobe of G is an induced subgraph of G whose vertex set consists of S and the vertices of a component in G - S

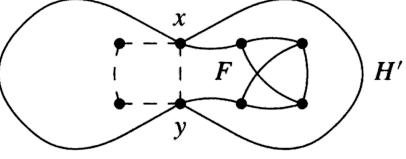


• Proposition (5.2.18, W) If G is k-critical, then G has no clique cutset. In particular, if G has a cutset $S = \{x, y\}$, then x, y are non-adjacent and G has an S-lobe H such that $\chi(H + xy) = k$

Chromatic number 4 has a K_4 -subdivision

• Theorem (5.2.20, W; Dirac 1952) Every graph with chromatic number at least 4 contains a K₄-subdivision





Proposition (5.2.18, W) If G is k-critical, then G has no clique cutset. In particular, if G has a cutset $S = \{x, y\}$, then x, y are non-adjacent and G has an S-lobe H such that $\chi(H + xy) = k$

Lemma (4.2.3, W; Expansion Lemma) If G is a k-connected graph, and G' is obtained from G by adding a new vertex y with at least k neighbors in G, then G' is k-connected

Hajós' conjecture

- Hajós' conjecture [1961]: Every k-chromatic graph contains a subdivision of K_k
- k = 2: Every 2-chromatic graph has a nontrivial path
- k = 3: Every 3-chromatic graph has a cycle
- It is open for k = 5,6
- Exercise (Ex5.2.40, W) It is false for k = 7 or 8

Chromatic Polynomials

Definition and examples

- It is brought up by George David Birkhoff in 1912 in an attempt to prove the four color theorem
- Define <u>x(G; k)</u> to be the number of different colorings of a graph G using at most k colors
- Examples:
 - How many different colorings of K_4 using 4 colors?
 - 4×3×2×1
 - $\chi(K_4; 4) = 24$
 - How many different colorings of K_4 using 6 colors?
 - 6×5×4×3
 - $\chi(K_4; 6) = 360$
 - How many different colorings of K_4 using 2 colors?
 - 0
 - $\chi(K_4; 2) = 0$

Examples

• If $k \ge n$ $\chi(K_n; k) = k(k-1)\cdots(k-n+1)$

• If *k* < *n*

$$\chi(K_n;k)=0$$

- G is k-colorable $\Leftrightarrow \chi(G) \le k \iff \chi(G;k) > 0$
- $\chi(G) = \min\{k \ge 1: \chi(G; k) > 0\}$

Chromatic recurrence

• G - e and G/e

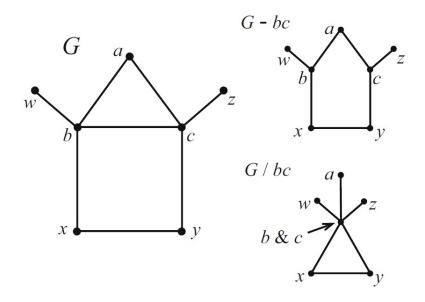


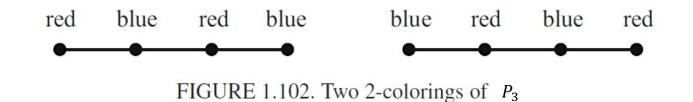
FIGURE 1.98. Examples of the operations.

• Theorem (1.48, H; 5.3.6, W) Let G be a graph and e be any edge of G. Then

$$\chi(G;k) = \chi(G-e;k) - \chi(G/e;k)$$

Use chromatic recurrence to compute $\chi(G;k)$

- Example: Compute $\chi(P_3; k) = k^4 3k^3 + 3k^2 k$
- Check: $\chi(P_3; 1) = 0, \chi(P_3; 2) = 2$



• Example: What is $\chi(K_n - e; k)$?

More examples

• Path
$$P_{n-1}$$
 has $n-1$ edges (n vertices)
 $\chi(P_{n-1};k) = k(k-1)^{n-1}$

• Any tree *T* on *n* vertices

$$\chi(T;k) = k(k-1)^{n-1}$$

• Cycle C_n

$$\chi(C_n;k) = (k-1)^n + (-1)^n (k-1)$$

- When *n* is odd, $\chi(C_n; 2) = 0, \chi(C_n; 3) > 0$
- When *n* is even, $\chi(C_n; 2) > 0$

Properties of chromatic polynomials

- Theorem (1.49, H; Ex 3, S1.6.4, H) Let G be a graph of order n
 - $\chi(G; k)$ is a polynomial in k of degree n
 - The leading coefficient of $\chi(G; k)$ is 1
 - The constant term of $\chi(G; k)$ is 0
 - If G has i components, then the coefficients of k^0, \dots, k^{i-1} are 0
 - G is connected \Leftrightarrow the coefficient of k is nonzero
 - The coefficients of $\chi(G; k)$ alternate in sign
 - The coefficient of the k^{n-1} term is -|E(G)|
 - A graph G is a tree $\Leftrightarrow \chi(G; k) = k(k-1)^{n-1}$

 \Leftrightarrow (Theorem 1.10, 1.12, H) *T* is connected with n - 1 edges

• A graph G is complete $\Leftrightarrow \chi(G; k) = k(k-1) \cdots (k-n+1)$

Simplicial elimination ordering

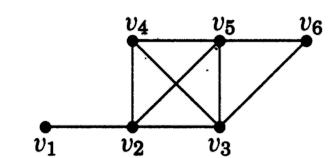
- Roots for the chromatic polynomials? Fundamental theorem of algebra
- A vertex of G is simplicial if its neighborhood in G induces a clique
- A simplicial elimination ordering is an ordering v_n, \ldots, v_1 for deletion of vertices s.t. each vertex v_i is a simplicial vertex of the graph reduced by $\{v_1, \ldots, v_i\}$
- Chromatic polynomials If we have colored v_1, \ldots, v_{i-1} , then there are k - d(i) ways to color v_i where $d(i) = |N(v_i) \cap \{v_1, \ldots, v_{i-1}\}|$. Thus

$$\chi(G;k) = \prod_{i=1}^{n} (k - d(i))$$

Nice factorization property!

Examples

- In a tree, a simplicial elimination ordering is a successive deletion of leaves
 - Another proof for $\chi(T; k) = k(k-1)^{n-1}$
- Example (5.3.13, W) v_6, \ldots, v_1 is a simplicial elimination ordering. The values d(i) are 0,1,1,2,3,2. Thus the chromatic polynomial is k(k-1)(k-1)(k-2)(k-3)(k-2)



- Exercise (Ex 5.3.19, W) There exists some graph without simplicial elimination ordering but has a nice factorization form for chromatic polynomial
 - The existence of simplicial elimination ordering is a sufficient condition for the chromatic polynomial having all real roots, but not necessary

Chordal graphs

- A chord of a cycle C is an edge not in C whose endpoints lie in C
- A chordless cycle in G is a cycle of length at least 4 that has no chord
- Theorem (5.3.17, W; Dirac 1961) A simple graph has a simplicial elimination ordering ⇔ it is a chordal graph (a simple graph without chordless cycle)
- TONCAS!
- Further $\chi(C_n; k) = (k-1)^n + (-1)^n (k-1)$ does not have a degree-1 decomposition
- Lemma (5.3.16, W) For every vertex x in a chordal graph, there is a simplicial vertex of G among the vertices farthest from x

|G'|

Η

Chord

Lecture 8: Planarity

Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS445/index.html

Motivation

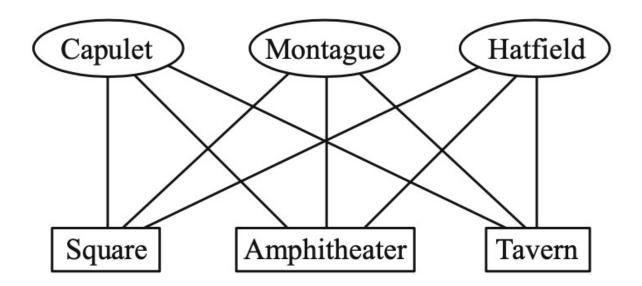


FIGURE 1.72. Original routes.

Definition and examples

- A graph G is said to be planar if it can be drawn in the plane in such a way that pairs of edges intersect only at vertices
- If G has no such representation, G is called nonplanar
- A drawing of a planar graph G in the plane in which edges intersect only at vertices is called a planar representation (or a planar embedding) of G

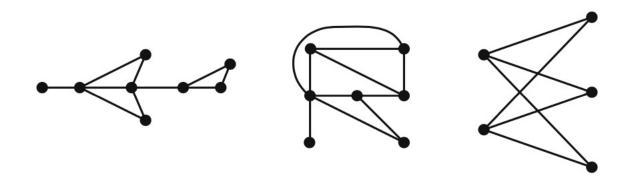
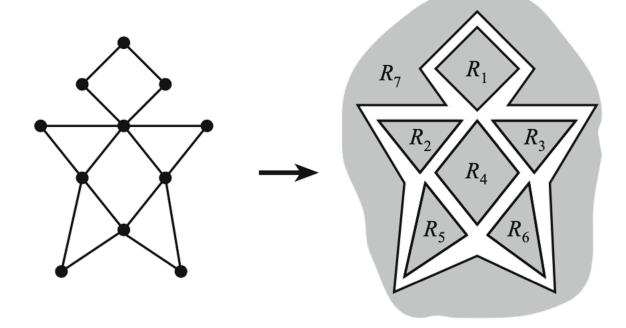


FIGURE 1.73. Examples of planar graphs.

Face

- Given a planar representation of a graph *G*, a face is a maximal region (polygonal open set) of the plane in which any two points can be joined by a curve that does not intersect any part of *G*
- The face R_7 is called the outer (or exterior) face



Face - properties

- An edge can come into contact with either one or two faces
- Example:
 - Edge e_1 is only in contact with one face S_1
 - Edge e_2 , e_3 are only in contact with S_2
 - Each of other edges is in contact with two faces
- An edge *e* bounds a face *F* if *e* comes into contact with *F* and with a face different from *F*
- The bounded degree b(F) is the number of edges that bound the face

• Example:
$$b(S_1) = b(S_3) = 3, b(S_2) = 6$$

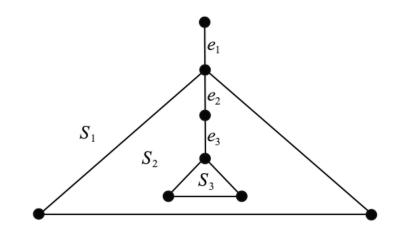


FIGURE 1.76. Edges e_1 , e_2 , and e_3 touch one face only.

Face - properties 2

- The length of a face in a plane graph G is the total length of the closed walk(s) in G bounding the face
- Proposition (6.1.13, W) If l(F) denotes the length of face F in a plane graph G, then $2|E(G)| = \sum l(F_i)$
- Theorem (Restricted Jordan Curve Theorem) A simple closed polygonal curve *C* consisting of finitely many segments partitions the plane into exactly two faces, each having *C* as boundary

Bond

- An edge cut may contain another edge cut
- Example: $K_{1,2}$ or star graphs

- A bond is a minimal nonempty edge cut
- Proposition (4.1.15, W) If G is a connected graph, then an edge cut F is a bond $\Leftrightarrow G F$ has exactly two components

Dual graph

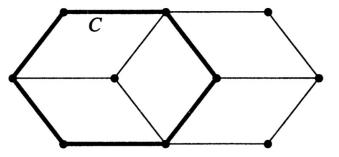
- The dual graph G^* of a plane graph G is a plane graph whose vertices are faces of G and edges are those contacting two faces
- Theorem (6.1.14, W) Edges in a plane graph G form a cycle in $G \Leftrightarrow$ the corresponding dual edges form a bond in G^*



Dual graph of bipartite graph

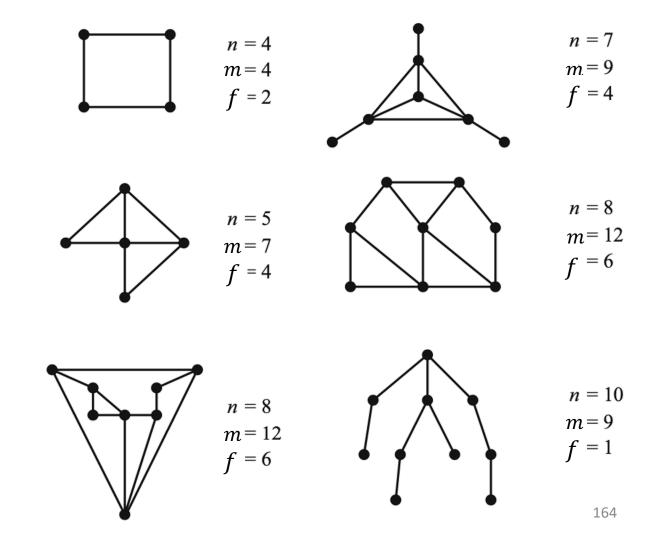
- Theorem (6.1.16, W) TFAE for a plane graph G
 - (a) G is bipartite
 - (b) Every face of G has even length
 - (c) The dual graph G^* is Eulerian

Theorem (1.2.18, W, Kőnig 1936) A graph is bipartite ⇔ it contains no odd cycle



The relationship between numbers of vertices, edges and faces

- ullet The number of vertices n
- The number of edges *m*
- The number of faces f



Euler's formula

- Theorem (1.31, H; 6.1.21, W; Euler 1758) If G is a connected planar graph with n vertices, m edges, and f faces, then n m + f = 2
 - Need Lemma: (Ex4, S1.5.1, H) Every tree is planar
- (Ex6, S1.5.2, H) Let G be a planar graph with k components. Then n m + f = k + 1

$K_{3,3}$ is nonplanar

• Theorem (1.32, H) $K_{3,3}$ is nonplanar

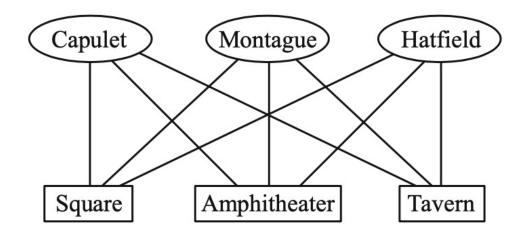


FIGURE 1.72. Original routes.

Upper bound for m

- Theorem (1.33, H; 6.1.23, W) If G is a planar graph with $n \ge 3$ vertices and m edges, then $m \le 3n 6$. Furthermore, if equality holds, then every face is bounded by 3 edges. In this case, G is maximal
- (Ex4, S1.5.2, H) Let G be a connected, planar, K_3 -free graph of order $n \ge 3$. Then G has no more than 2n 4 edges
- Corollary (1.34, H) K_5 is nonplanar
- Theorem (1.35, H) If G is a planar graph , then $\delta(G) \leq 5$
- (Ex5, S1.5.2, H) If G is bipartite planar graph, then $\delta(G) < 4$

Polyhedra

(Convex) Polyhedra 多面体

• A polyhedron is a solid that is bounded by flat surfaces

Polyhedra are planar

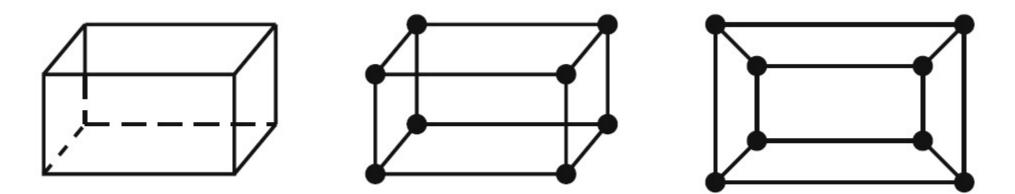


FIGURE 1.81. A polyhedron and its graph.

Properties

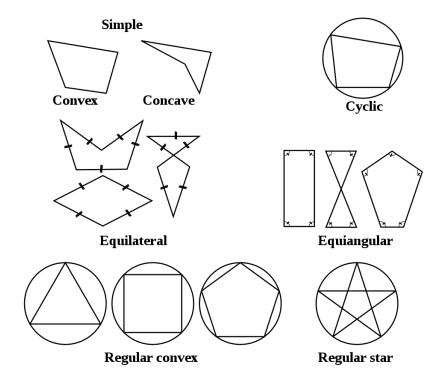
• Theorem (1.36, H) If a polyhedron has *n* vertices, *m* edges, and *f* faces, then

$$n-m+f=2$$

- Given a polyhedron *P*, define $\rho(P) = \min\{l(F): F \text{ is a face of } P\}$
- Theorem (1.37, H) For all polyhedron $P, 3 \le \rho(P) \le 5$

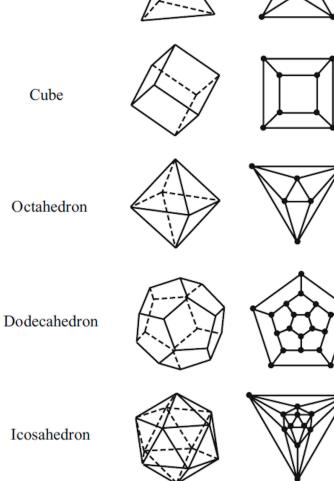
Regular polyhedron 正多面体

- A regular polygon is one that is equilateral and equiangular 正多边形(cycle),等边、等角
- A polyhedron is regular if its faces are mutually congruent, regular polygons and if the number of faces meeting at a vertex is the same for every vertex 正多面体
 - 面是相互全等的、正多边形、点的度数相等



Regular polyhedron 正多面体

- Theorem (1.38, H; 6.1.28, W) There are exactly five regular polyhedral
- 正四面体
- 立方体(正六面体)
- •正八面体
- 正十二面体
- •正二十面体



Tetrahedron

FIGURE 1.82. The five regular polyhedra and their graphical representations.

Kuratowski's Theorem

Kuratowski's Theorem

- Theorem (1.39, H; Ex1, S1.5.4, H) A graph G is planar \Leftrightarrow every subdivision of G is planar
- Theorem (1.40, H; Kuratowski 1930) A graph is planar \Leftrightarrow it contains no subdivision of $K_{3,3}$ or K_5

The Four Color Problem

The Four Color Problem

- Q: Is it true that the countries on any given map can be colored with four or fewer colors in such a way that adjacent countries are colored differently?
- Theorem (Four Color Theorem) Every planar graph is 4-colorable
- Theorem (Five Color Theorem) (1.47, H; 6.3.1, W) Every planar graph is 5-colorable

Theorem (1.35, H) If G is a planar graph , then $\delta(G) \leq 5$

• Exercise (Ex5, S1.6.3, H) Where does the proof go wrong for four colors?

Lecture 9: Ramsey Theory

Shuai Li

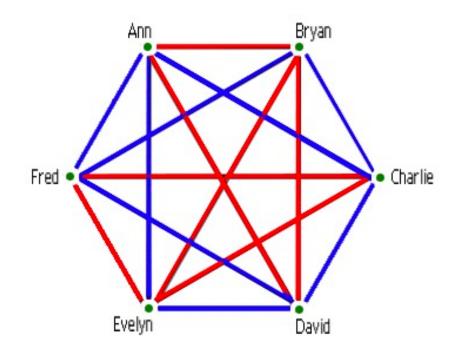
John Hopcroft Center, Shanghai Jiao Tong University

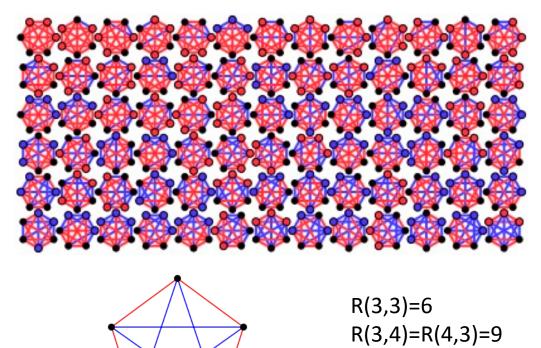
https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS445/index.html

The friendship riddle

• Does every set of six people contain three mutual acquaintances or three mutual strangers?



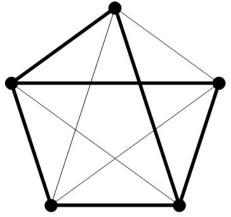


https://plus.maths.org/content/friends-and-strangers Wikipedia R(3,5)=R(5,3)=14

R(3,6)=R(6,3)=18

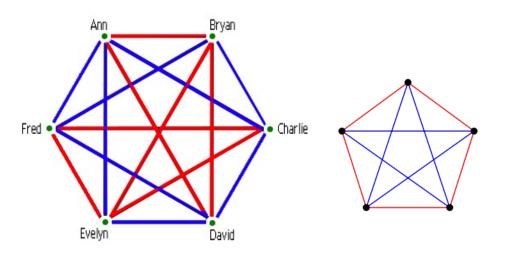
(classical) Ramsey number

- A 2-coloring of the edges of a graph *G* is any assignment of one of two colors of each of the edges of *G*
- Let p and q be positive integers. The (classical) Ramsey number associated with these integers, denoted by R(p,q), is defined to be the smallest integer n such that every 2-coloring of the edges of K_n either contains a red K_p or a blue K_q as a subgraph
- It is a typical problem of extremal graph theory



Examples

- R(1,3) = 1
- (Ex2, S1.8.1, H) R(1, k) = 1
- R(2,4) = 4
- (Ex3, S1.8.1, H) R(2, k) = k
- Theorem (1.61, H; 8.3.1, 8.3.9, W) R(3,3) = 6



Examples (cont.)

• Theorem (1.62, H; 8.3.10, W) R(3,4) = 9

Theorem A finite graph G has an even number of vertices with odd degree

• (Ex4, S1.8.1, H) R(p,q) = R(q,p)

Values / known boundin	g ranges for Ramse	y numbers $R(r, s)$ (see	uence A212954 deal in the OEIS)
------------------------	--------------------	--------------------------	---------------------------------

rs	1	2	3	4	5	6	7	8	9	10		
1	1	1	1	1	1	1	1	1	1	1		
2		2	3	4	5	6	7	8	9	10		
3			6	9	14	18	23	28	36	40-42		
4				18	25 ^[10]	36–41	49–61	59 ^[14] –84	73–115	92-149		
5					43-48	58-87	80-143	101-216	133–316	149 ^[14] _442		
6						102-165	115 ^[14] -298	134 ^[14] _495	183–780	204-1171		
7							205-540	217-1031	252-1713	292-2826		
8								282-1870	329-3583	343-6090		
9							2		565-6588	581-12677		
10										798-23556		

Bounds on Ramsey numbers

• Theorem (1.64, H; 2.28, H; 8.3.11, W) If $q \ge 2, q \ge 2$, then $R(p,q) \le R(p-1,q) + R(p,q-1)$

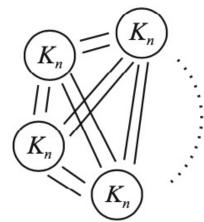
Furthermore, if both terms on the RHS are even, then the inequality

is strict Theorem A finite graph G has an even number of vertices with odd degree

- Theorem (1.63, H; 2.29, H) $R(p,q) \le {p+q-2 \choose p-1}$
- Theorem (1.65, H) For integer $q \ge 3$, $R(3,q) \le \frac{q^2+3}{2}$
- Theorem (1.66, H; 8.3.12, W; Erdős and Szekeres 1935) If $p \ge 3$, $R(p,p) > \lfloor 2^{p/2} \rfloor$

Graph Ramsey Theory

- Given two graphs G and H, define the graph Ramsey number R(G, H) to be the smallest value of n such that any 2-coloring of the edges of K_n contains either a red copy of G or a blue copy of H
 - The classical Ramsey number R(p,q) would in this context be written as $R(K_p, K_q)$
- Theorem (1.67, H) If G is a graph of order p and H is a graph of order q, then $R(G, H) \leq R(p, q)$
- Theorem (1.68, H) Suppose the order of the largest component of H is denoted as C(H). Then $R(G,H) \ge (\chi(G) - 1)(C(H) - 1) + 1$



Graph Ramsey Theory (cont.)

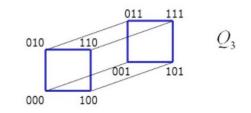
• Theorem (1.69, H; 8.3.14, W) $R(T_m, K_n) = (m-1)(n-1) + 1$

Theorem (1.45, H; Ex6, S1.6.2, H) For any graph G of order n, $\frac{n}{\alpha(G)} \le \chi(G) \le n + 1 - \alpha(G)$

Proposition (5.2.13, W) Let G be a k-critical graph (a) For every $v \in V(G)$, there is a proper coloring such that v has a unique color and other k - 1 colors all appear on N(v) $\Rightarrow \delta(G) \ge k - 1$

Theorem (1.16, H) Let T be a tree of order k + 1 with k edges. Let G be a graph with $\delta(G) \ge k$. Then G contains T as a subgraph

More on pigeonhole principle



- Proposition (8.3.1, W) Among 6 people, it is possible to find 3 mutual acquaintances or 3 mutual non-acquaintances
 - \Leftrightarrow For every simple graph with 6 vertices, there is a triangle in G or in \overline{G}
- Theorem (8.3.2, W) If T is a spanning tree of the k-dimensional cube Q_k , then there is an edge of Q_k outside T whose addition to T creates a cycle of length at least 2k

T is a tree of order $n \Rightarrow Any$ two vertices of T are linked by a unique path in T

• \Rightarrow Every spanning tree of Q_k has diameter at least 2k - 1

More on pigeonhole principle 2

• Theorem (8.3.3, W; Erdős–Szekeres 1935) Every list of $\ge n^2 + 1$ distinct numbers has a monotone sublist of length $\ge n + 1$

• Generalization. (r-1)(s-1)+1

• Theorem (8.3.4, W; Graham-Kleitman 1973) In every labeling of $E(K_n)$ using distinct integers, there is a walk of length at least n-1 along which the labels strictly increase